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Chapter 1

Introduction

1.1 Overview

In classical algebra, we study sets, monoids, groups, abelian groups, rings. Each of these structures are
built upon the other. In higher-level courses, we may study groupoids, which are examples of categories.
Categories, more generally, can be seen as generalizations of monoids. Monoidal categories, which are
categories with extra structure, are a generalization of rings, in some sense.

In higher algebra, we study spaces, E1-spaces, spectra, E1-ring spectra. Underlying these objects we
have∞-groupoids, ∞-categories, and monoidal∞-categories. When we study spaces, we do not consider them
up to homeomorphism, but instead up to weak homotopy equivalence. Thus, when we refer to “studying
spaces,” we will always mean that we are studying topological spaces up to weak homotopy equivalence. We
now give a synthetic definition of what an ∞-category is; we will circle back to a technical definition later.

What is an ∞-category? An ∞-category (or (∞, 1)-category) C should consist of:

1. a class of objects,

2. a class of morphisms so that HomC (𝑋,𝑌 ) is a space, considered up to weak homotopy equivalences

3. a class of 𝑛-morphisms for 𝑛 ≥ 2, where for instance 2-morphisms are morphisms of 1-morphisms,
3-morphisms are morphisms 2-morphisms, etc.
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4. morphisms can be composed in a suitable way,

5. 𝑛-morphisms for 𝑛 ≥ 2 are invertible in some sense.

An ∞-groupoid (or (∞, 0)-category) is an ∞-category where all the 1-morphisms are also invertible in
some sense.

Why study spaces up to weak homotopy equivalence? By the Yoneda lemma, we have

𝑋 � 𝑌 ⇔ HomTop(𝐴, 𝑋) � HomTop(𝐴,𝑌 )

for all 𝐴 ∈ Top. Figuring out Hom(𝐴, 𝑋) up to bijection for all 𝐴 is very difficult, so we prefer to study
continuous maps up to homotopy. If 𝑋 and 𝑌 are nice enough, we say that 𝑓 ≃ 𝑔 in Hom(𝑋,𝑌 ) if there is
some path 𝐼 → Map(𝑋,𝑌 ) so that 0 ↦→ 𝑓 and 1 ↦→ 𝑔. We define [𝑋,𝑌 ] = HomTop(𝑋,𝑌 )/≃. Then 𝑋 ≃ 𝑌 if
and only if [𝐴, 𝑋] � [𝐴,𝑌 ] for all 𝐴 ∈ Top.

We may then ask when [𝐴,−] : Top∗ → Set factors through Grp or Ab. One can show that [𝐴,−] factors
through Grp if and only if 𝐴 is a co-𝐻-group in Top. That is, there are maps

𝐴→ 𝐴 ∨ 𝐴
𝐴→ ∗,

which are coassociative, counital, coinvertible.

Example 1.1.1. One example of a co-𝐻-space is 𝑆𝑛 for 𝑛 ≥ 1. The map 𝑆𝑛 → 𝑆𝑛 ∨ 𝑆𝑛 is the pinch map,
and the counit is the unique map 𝑆𝑛 → ∗.

Definition 1.1.2. A space 𝑋 is weakly homotopy equivalent to 𝑌 , written 𝑋 ∼ 𝑌 , if there is a map 𝑋 → 𝑌

inducing an isomorphism

𝜋𝑛 (𝑋) = [𝑆𝑛, 𝑋]∗ � [𝑆𝑛, 𝑌 ]∗ = 𝜋𝑛 (𝑌 ),

for all 𝑛 ≥ 0 (for 𝑛 ≥ 1 this is a group isomorphism).

Note that if 𝑋 ∼ 𝑌 , then 𝐻𝑛 (𝑋) � 𝐻𝑛 (𝑌 ) for any 𝑛.

Theorem 1.1.3. (Cellular approximation) For any 𝑋 in Top, there exists a CW complex 𝑋 with a canonical

map 𝑋
∼−→ 𝑋 that is a weak equivalence.

Theorem 1.1.4. (Whitehead) If 𝑋,𝑌 are CW complexes, then 𝑋
≃−→ 𝑌 is a homotopy equivalence if and

only if 𝑋
∼−→ 𝑌 is a weak homotopy equivalence.

Exercise 1.1.5. Find spaces 𝑋 and 𝑌 which are weakly homotopy equivalent but not homotopy equivalent.

1.2 Categories

1.2.1 A first definition

The definition of a category is versatile. It generalizes monoids, groups, graphs, and posets, to name a few.
At the same time, the definition captures also the systematic approach in mathematics in which we introduce
a mathematical structure (e.g. groups) and study a classification of all possible structures (e.g. determine
all groups up to group isomorphisms).

Definition 1.2.1. A category C consists of the following data.

1. A class Ob(C). Its elements are called objects of the category C. We write 𝑋 ∈ C instead of 𝑋 ∈ Ob(C).
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2. For each ordered pair (𝑋,𝑌 ) of objects in C, we have a set HomC (𝑋,𝑌 ). Its elements are called
morphisms, arrows or maps from 𝑋 to 𝑌 . The set HomC (𝑋,𝑌 ) is referred as the hom-set of 𝑋 and 𝑌

in C. An element 𝑓 ∈ HomC (𝑋,𝑌 ) is written as 𝑓 : 𝑋 → 𝑌 or as 𝑋
𝑓
→ 𝑌 and we say 𝑓 : 𝑋 → 𝑌 is a

map in C. Given a map 𝑓 : 𝑋 → 𝑌 in C, then 𝑋 is said to be the domain of 𝑓 and 𝑌 the codomain of

𝑓 . We denote Mor(C) =
∐
𝑋,𝑌 ∈C

HomC (𝑋,𝑌 ) the class of all morphisms in C.

3. Given objects 𝑋, 𝑌 and 𝑍 in C, we have a function on the hom-sets:

HomC (𝑌, 𝑍) ×HomC (𝑋,𝑌 ) −→ HomC (𝑋, 𝑍)
(𝑔, 𝑓 ) ↦−→ 𝑔 ◦ 𝑓

The map 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 is called the composition or composite of 𝑓 and 𝑔.

The above data is subject to the following axioms.

Associativity Given 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍, and ℎ : 𝑍 → 𝑊 maps in C, then:

(ℎ ◦ 𝑔) ◦ 𝑓 = ℎ ◦ (𝑔 ◦ 𝑓 ).

Unitality For each object 𝑋 ∈ C, there exists a map id𝑋 : 𝑋 → 𝑋 in C, called the identity map on 𝑋, such
that:

• id𝑋 ◦ 𝑓 = 𝑓 , for all maps 𝑓 : 𝑌 → 𝑋 in C;

• 𝑔 ◦ id𝑋 = 𝑔, for all maps 𝑔 : 𝑋 → 𝑌 in C.

The composition allows us to uniquely fill in the diagram:

𝑋 𝑌

𝑍

𝑓

𝑔◦ 𝑓
𝑔

Associativity allows to unambiguously fill the diagram below with the dotted line:

𝑊

𝑋 𝑍

𝑌

𝑓 𝑔

𝑔◦ 𝑓

ℎℎ◦𝑔◦ 𝑓

ℎ◦𝑔

The unitality allows us to extend any map 𝑓 : 𝑋 → 𝑌 :

𝑋 𝑌 𝑋 𝑋

𝑌 𝑌

𝑓

𝑓 𝑓
𝑓

Remark 1.2.2. What we have defined above is what is usually called a locally small category. If we require
HomC (𝑋,𝑌 ) to only be a class instead of set, for each pair of objects 𝑋 and 𝑌 , then we say we have a large
category.
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Exercise 1.2.3. Show that the identity morphism id𝑋 is unique in every category. In other words, given an
object 𝑋, if there exists a map 𝛼 : 𝑋 → 𝑋 such that 𝛼 ◦ 𝑓 = 𝑓 for all maps 𝑓 : 𝑌 → 𝑋 in C and 𝑔 ◦ 𝛼 = 𝑔 for
all maps 𝑔 : 𝑋 → 𝑌 in C, then 𝛼 = id𝑋.

Definition 1.2.4. Given a category C, a map 𝑓 : 𝑋 → 𝑌 in C is called an isomorphism if there exists a map
𝑔 : 𝑌 → 𝑋 in C such that: 𝑓 ◦ 𝑔 = id𝑌 and 𝑔 ◦ 𝑓 = id𝑋. If such 𝑔 exists, it is denoted 𝑓 −1 and is called the
inverse of 𝑓 . We say two objects 𝑋 and 𝑌 in C are isomorphic if there exists an isomorphism 𝑓 : 𝑋 → 𝑌 . In
this case, we write 𝑋 � 𝑌 .

Exercise 1.2.5. Show that the inverse of an isomorphism is necessarily unique.

Exercise 1.2.6. Show that composition preserves isomorphisms: given isomorphisms 𝑓 : 𝑋 → 𝑌 and
𝑔 : 𝑌 → 𝑍 in a category C, then 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 is an isomorphism in C. Conclude that the relation 𝑋 � 𝑌
defines an equivalence relation on Ob(C).

Example 1.2.7. The category of sets, denoted Set, is defined as follows.

1. Its class of objects are all sets. Notice here the necessity of Ob(Set) to be a class: there is no set of all
sets.

2. Given sets 𝑋 and 𝑌 , then HomSet (𝑋,𝑌 ) is the set of all functions 𝑋 → 𝑌 .

3. Composition in Set is defined as follows. Given 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍, define 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 by
(𝑔 ◦ 𝑓 ) (𝑥) = 𝑔( 𝑓 (𝑥)), ∀𝑥 ∈ 𝑋.

For any set 𝑋, define id𝑋 : 𝑋 → 𝑋 by id𝑋 (𝑥) = 𝑥, ∀𝑥 ∈ 𝑋. One can check that the composition is indeed
associative and unital and thus Set is a category. An isomorphism in Set is precisely a bijection.

The next examples are categories in which objects are sets with extra structure. Composition, associa-
tivity and unitality are induced by the composition in Set.

Example 1.2.8. The category of groups, denoted Grp, is defined as follows.

1. Its class of objects are groups.

2. Given groups 𝐺 and 𝐻, define HomGrp (𝐺, 𝐻) to be the set of all group homomorphisms 𝐺 → 𝐻. The
name hom-set originates from this category.

3. Composition is defined as in Set.

Isomorphisms in Grp are precisely group isomorphisms.

Example 1.2.9. The category of Abelian groups, denoted Ab, is defined as follows.

1. Its class of objects are Abelian groups.

2. Given Abelian groups 𝐴 and 𝐵, define HomAb (𝐴, 𝐵) to be the set of all group homomorphisms 𝐴→ 𝐵.

3. Composition is defined as in Set.

Isomorphisms in Ab are precisely group isomorphisms (between Abelian groups).

Example 1.2.10. The category of monoids, denoted Mon, is defined as follows.

1. Its class of objects are monoids.

2. Given monoids 𝑀 and 𝑁, define HomMon (𝑀, 𝑁) to be the set of all monoid homomorphisms 𝑀 → 𝑁.

3. Composition is defined as in Set.

Example 1.2.11. The category of rings, denoted Ring, is defined as follows.
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1. Its class of objects are rings (with unity).

2. Given rings 𝑅 and 𝑆, define HomRing (𝑅, 𝑆) to be the set of all ring homomorphisms 𝑅 → 𝑆 (that
preserves unities).

3. Composition is defined as in Set.

Isomorphisms in Ring are precisely ring isomorphisms.

Example 1.2.12. Let 𝐺 be a group. Define the category of left 𝐺-sets 𝐺Set as follows.

1. Its class of objects are left 𝐺-sets.

2. Given left 𝐺-sets 𝑋 and 𝑌 , define Hom
𝐺Set (𝑋,𝑌 ) to be the set of 𝐺-equivariant maps.

3. Composition is defined as in Set.

Define similarly the category of right 𝐺-sets Set𝐺.

Example 1.2.13. Let F be a field. The category VectF of vector spaces over F is defined as follows.

1. Its class of objects are vector spaces over F.

2. Given vector spaces 𝑉 and 𝑊 over F, define HomVectF (𝑉,𝑊) to be the set of linear transformation
𝑉 → 𝑊 over F.

3. Composition is defined as in Set.

Isomorphisms in VectF are precisely isomorphisms of vector spaces.

Warning 1.2.14. The names of the categories in the examples above can be misleading. They seem to
suggest that a category is defined by its objects, but it really is not case. A category is defined by its
morphisms. A better name for Set would be the “the category of set functions on all sets”, and a better
name for Grp would be “the category of group homomorphisms on all groups”, for Ab would be “the category
of group homomorphisms restricted on Abelian group”, and so on. In practice, these names are too long,
and it is natural to consider these mathematical objects with the appropriate morphisms.

The next examples shall emphasize how morphisms are the main actors in a category, and not objects.

Example 1.2.15. Given (ℙ, ≤) a poset, it defines a category, also denoted ℙ, as follows.

1. Ob(ℙ) = ℙ.

2. ∀𝑥, 𝑦 ∈ ℙ, Homℙ (𝑥, 𝑦) =
{
∗ if 𝑥 ≤ 𝑦
∅ otherwise.

In other words, we write 𝑥 → 𝑦 if and only if 𝑥 ≤ 𝑦.

3. Composition is defined by transitivity: ∀𝑥, 𝑦, 𝑧 ∈ ℙ, if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧.

We now need to check associativity and unitality.

• Associativity follows from the unambiguity of transivity: given 𝑥 ≤ 𝑦, 𝑦 ≤ 𝑧, 𝑧 ≤ 𝑤 in ℙ, then we can
first deduce from 𝑦 ≤ 𝑧 ≤ 𝑤 that 𝑦 ≤ 𝑤 and thus from 𝑥 ≤ 𝑦 ≤ 𝑤 we obtain 𝑥 ≤ 𝑤; or we could have
started from 𝑥 ≤ 𝑦 ≤ 𝑧 to deduce 𝑥 ≤ 𝑧, and thus from 𝑥 ≤ 𝑧 ≤ 𝑤 we obtain 𝑥 ≤ 𝑤.

• Unitality follows from the fact that ∀𝑥 ∈ ℙ we have 𝑥 ≤ 𝑥. Thus we get that if 𝑥 ≤ 𝑥 ≤ 𝑦 then 𝑥 ≤ 𝑦.
Similarly if 𝑥 ≤ 𝑦 ≤ 𝑦 then 𝑥 ≤ 𝑦.

Example 1.2.16. The empty set ∅ can be regarded as a poset. This defines a category 𝟘 with no objects
and no morphisms.
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Example 1.2.17. Any singleton {★} is uniquely endowed with a poset structure. This defines a category 𝟙

with one object and one morphism:

•

id

Since every object in a category associates an identity morphism, we often omit in the picture. Thus the
category 𝟙 is depicted as:

•

Example 1.2.18. Given the poset {1 ≤ 2}, we obtain a category 𝟚 with two objects and three morphisms
(two of them are identity morphisms that we omit in the picture):

• •

Example 1.2.19. Given the poset {1 ≤ 2 ≤ 3}, we obtain a category 𝟛 with three objects and six morphisms
depicted as (three of them are the identity morphisms and are omitted):

• • •

or:
• •

•

Since the third morphism depicted is the composition of the other two, we often also omit composition, and
thus we depict 𝟛 as:

• • •

Exercise 1.2.20. From the poset {1 ≤ 2 ≤ 3 ≤ 4}, depict the category 𝟜:

• • • •

with all its compositions.

Remark 1.2.21. Recollecting from the examples above: when we picture a category, we omit the identity
and the compositions.

Example 1.2.22. The natural numbers (ℕ, ≤) form a poset and thus a category ℕ:

• • · · · • · · ·

Example 1.2.23. The real numbers (ℝ, ≤) form a poset and thus a category ℝ, but it is harder to depict
than ℕ.

Definition 1.2.24. A category C is said to be small if Ob(C) is a set.

Example 1.2.25. If ℙ is a poset, then its associated category is small. Thus 𝟘, 𝟙, 𝟚, 𝟛, ℕ and ℝ are small
categories.

Example 1.2.26. The categories Set, Grp etc are not small.

Exercise 1.2.27. Show that any small categories can be regarded as a directed graph. Is every directed
graph a category? What fails?
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1.2.2 Monoids with many objects

The composition in a category must be associative and unital. These axioms are very similar to associativity
and unitality of the binary operation of a monoid. Here we show precisely that a category is in fact a
generalization of a monoid.

Example 1.2.28. Let (𝑀, ∗, 𝑒) be a monoid. Define a category 𝐵𝑀 as follows.

1. The category 𝐵𝑀 has a unique object, labelled arbitrarily ★. In other words: Ob(𝐵𝑀) = {★}.

2. Given that there is only one object in the category, we only need to define one hom-set. Define
Hom𝐵𝑀 (★,★) = 𝑀.

3. We define composition in 𝐵𝑀 via the binary operation on the monoid 𝑀:

𝑀 × 𝑀 = Hom𝐵𝑀 (★,★) ×Hom𝐵𝑀 (★,★) −→ Hom𝐵𝑀 (★,★) = 𝑀
(𝑥, 𝑦) ↦−→ 𝑥 ∗ 𝑦

Since the monoid 𝑀 is associative, then so is the composition on 𝐵𝑀. The identity map id★ : ★→ ★ is equal
to 𝑒 ∈ 𝑀, the neutral element of 𝑀. Since a monoid is unital, then we obtain the unitality axiom on the
category 𝐵𝑀. Isomorphisms in 𝐵𝑀 are precisely units of 𝑀.

Remark 1.2.29. It is important to not confuse the morphisms in 𝐵𝑀 with actual set functions. Indeed, in
𝐵𝑀, we replace entirely formally an element 𝑥 ∈ 𝑀 by a map 𝑥 : ★→ ★. But it is important to keep in mind
that ★ is not a set and 𝑥 : ★→ ★ is not a function of sets, it is just a different notation to express 𝑥 ∈ 𝑀.

Exercise 1.2.30. Show that if C is a category with a unique object denoted ★, then (HomC (★,★), ◦, id★) is
a monoid. Conclude there is a correspondence between monoids and categories with one object.

Therefore a category with many objects can be regarded as a “monoid with many objects”. Perhaps the
next exercise can be enlightening in that regard.

Exercise 1.2.31. Let {𝑀1, . . . , 𝑀𝑛} be a collection of monoids. Define a category C as follows.

1. Ob(C) = {1, . . . , 𝑛}.

2. HomC (𝑖, 𝑗) =
{
𝑀𝑖 if 𝑖 = 𝑗

∅ otherwise.

3. Composition is induced by the binary operations on each 𝑀𝑖.

Verify that C is a category. Can you generalize this example to any collection {𝑀𝑖}𝑖∈𝐼 of monoids, where 𝐼
is any set?

Example 1.2.32. Let {1} be the trivial monoid. Then its associated category 𝐵{1} is the small category 𝟙.

Example 1.2.33. We can view N = (N, +, 0) as a monoid. This defines a category 𝐵N depicted as:

•

1

2

.

.

.

Given two morphisms • 𝑛→ • and • 𝑚→ •, then their composition is the morphism • 𝑛+𝑚→ •. Notice the
difference with the category of Example 1.2.22 when N was regarded as a poset.

Exercise 1.2.34. Given a directed graph, show how to define a category in which you freely add all possible
compositions of its edges and identities on vertices? What is the category obtained from the directed graph
with a single loop?

•
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1.2.3 Groupoids

Since a group 𝐺 is a monoid in which every element is a unit, we see that the associated category with one
object 𝐵𝐺, as in Example 1.2.28, is a category with one object in which every morphism is an isomorphism.

Definition 1.2.35. A groupoid is a category in which every morphism is an isomorphism.

Example 1.2.36. A groupoid with one object defines precisely a group. Conversely, given a group 𝐺, it
defines uniquely a groupoid 𝐵𝐺.

Example 1.2.37. Define 𝕀 to be the category with two objects and exactly one morphism from one object
to another. It can be depicted as (we omitted the identity morphisms):

• •

Since the composition of the maps depicted above must be a map with a domain equalling its codomain,
then it must be the identity by unicity. Hence 𝕀 is a groupoid.

Exercise 1.2.38. Let 𝑅 be a ring. Define GL(𝑅) to be the following category.

1. Ob(GL(𝑅)) = {1, 2, 3, . . .}.

2. HomGL(𝑅) (𝑛, 𝑚) =
{

GL𝑛 (𝑅) if 𝑛 = 𝑚
∅ otherwise.

3. Composition induced by product of matrices.

Verify that GL(𝑅) is a groupoid.

Definition 1.2.39. A category C is discrete if the only morphisms are the identities. In other words, for all
objects 𝑋 and 𝑌 in C, we have:

HomC (𝑋,𝑌 ) =
{
{id𝑋} if 𝑋 = 𝑌

∅ otherwise.

Example 1.2.40. Any discrete category is a groupoid.

Example 1.2.41. Given a set S (or more generally a class), define Sdisc to be the discrete category with
objects S. Given a category C, denote Cdisc the discrete category Ob(C)disc.
Definition 1.2.42. Given a category C, its maximal groupoid C�, is the category defined as follows.

1. Define Ob(C�) = Ob(C).

2. Given objects 𝑋 and 𝑌 , the set HomC� (𝑋,𝑌 ) ⊆ HomC (𝑋,𝑌 ) is defined to be the set of all isomorphisms
from 𝑋 to 𝑌 .

3. Since the composition of isomorphisms is an isomorphism, the composition HomC (𝑌, 𝑍)×HomC (𝑋,𝑌 ) →
HomC (𝑋, 𝑍) restricts to a composition HomC� (𝑌, 𝑍) ×HomC� (𝑋,𝑌 ) → HomC� (𝑋, 𝑍).

We shall see in Exercise 1.2.53 that C� is the largest groupoid contained in C, hence the name “maximal”.

Exercise 1.2.43. Let 𝑀 be a monoid. Recall we can regard it as a category 𝐵𝑀 with one object. Recall
also that we denote by 𝑀× its units. Show that (𝐵𝑀)� = 𝐵(𝑀×)
Exercise 1.2.44. Let 𝑅 be a ring. Define Mat(𝑅) to be the following category.

• Ob(Mat(𝑅)) = N.

• HomMat(𝑅) (𝑛, 𝑚) = M𝑚×𝑛 (𝑅), the set of matrices with 𝑚-rows and 𝑛-columns.

• Composition is induced by matrix multiplication: given matrices 𝐴 : 𝑛 → 𝑚 and 𝐵 : 𝑚 → 𝑘 then
𝐵 ◦ 𝐴 := 𝐵𝐴 ∈ M𝑘×𝑛 (𝑅).

Verify that Mat(𝑅) is a category and its maximal groupoid is GL(𝑅).
Exercise 1.2.45. What is the maximal groupoid of the categories obtained in Exercise 1.2.31?

Exercise 1.2.46. Explain why C� can never equal 𝟘 (unless C = 𝟘).
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1.2.4 Subcategories

We have seen that from a category C, we could restrict either its class of objects, or its sets of morphisms,
or both. If one regards a category as a monoid with many objects, since there are submonoids, this leads to
the notion of a subcategory.

Definition 1.2.47. Given a category C, a subcategory D consists of:

1. a subcollection Ob(D) ⊆ Ob(C)

2. for each 𝑋 and 𝑌 in D, a subset HomD (𝑋,𝑌 ) ⊆ HomC (𝑋,𝑌 )

such that D becomes itself a category with the composition induced from C, i.e.:

• if 𝑋 ∈ D, then id𝑋 is a morphism D;

• if 𝑓 : 𝑋 → 𝑌 is a morphism in D, then 𝑋 and 𝑌 are objects in D;

• if 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 are morphisms in D, then 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 is a morphism in D.

A subcategory D of C is full if HomD (𝑋,𝑌 ) = HomC (𝑋,𝑌 ) for all 𝑋,𝑌 ∈ D.

Example 1.2.48. The category Grp is a subcategory of Set but it is not full: not ever set map between
groups is a homomorphism. Similarly, we get that Ring is a non-full subcategory of Ab, Mon is a non-full
subcategory of Set etc.

Example 1.2.49. The category Ab of Abelian groups is a full subcategory of Grp.

Example 1.2.50. We can define a category Setinj with same objects as in Set, but the morphisms are only
injective functions of sets. Composition is the same as the composite of injective functions is an injective
function and the identity function is always injective. An isomorphism is precisely an injective function that
is surjective, i.e. a bijection. In many aspects, the category Setinj is similar to Set, but we shall see that
these categories are not the same. The category Setinj is a subcategory that is not full.

Exercise 1.2.51. Let 𝑀 be a monoid. Let 𝑁 ⊆ 𝑀 be a subset. Show that 𝑁 is a submonoid if and only
if 𝐵𝑁 is a subcategory of 𝐵𝑀. Conclude that a subset 𝐻 of a group 𝐺 is a subgroup if and only if 𝐵𝐻 is a
groupoid and a subcategory of the groupoid 𝐵𝐺.

Example 1.2.52. Given a category C, then Cdisc and C� are subcategories of C that are not full.

Exercise 1.2.53. Given a category C, show that if D is a subcategory C and a groupoid, then D is a
subcategory of the maximal groupoid C�.

Exercise 1.2.54. Show that given a category C, a subclass of objects in C defines uniquely a full subcategory
of C. Apply this to define the category CMon of commutative monoids as a full subcategory of Mon.

1.3 Construction on categories

Given a category, we can construct new categories.

1.3.1 Product of categories

Definition 1.3.1. Let C and D be categories. Define their Cartesian product C × D to be the following
category.

1. Its class of objects is Ob(C ×D) = Ob(C) ×Ob(D).
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2. Given objects 𝐶,𝐶′ ∈ C and 𝐷, 𝐷′ ∈ D, define

HomC×D
(
(𝐶, 𝐷), (𝐶′, 𝐷′)

)
= HomC (𝐶,𝐶′) ×HomD (𝐷, 𝐷′)

In other terms, a morphism (𝐶, 𝐷) → (𝐶′, 𝐷′) is denoted ( 𝑓 , 𝑔) and consists of a morphism 𝑓 : 𝐶 → 𝐶′

in C and a morphism 𝑔 : 𝐷 → 𝐷′ in D.

3. Composition is induced by the compositions in C and D. Given morphisms (𝐶, 𝐷)
( 𝑓 ,𝑔)
→ (𝐶′, 𝐷′) and

(𝐶′, 𝐷′)
( 𝑓 ′ ,𝑔′ )
→ (𝐶′′, 𝐷′′) in C ×D, define (𝑔′, 𝑓 ′) ◦ (𝑔, 𝑓 ) to be (𝑔′ ◦ 𝑔, 𝑓 ′ ◦ 𝑓 ) : (𝐶, 𝐷) → (𝐶′′, 𝐷′′).

Exercise 1.3.2. Verify that C ×D is indeed a category.

Example 1.3.3. The product 𝟚 × 𝟚 can be depicted as:

• •

• •

Exercise 1.3.4. Let 𝐺 and 𝐻 be monoids or groups. Show that 𝐵(𝐺 × 𝐻) can be regarded as 𝐵𝐺 × 𝐵𝐻.

1.3.2 Slice categories

Definition 1.3.5. Let C be a category. Fix 𝐶 an object in C. The slice category of C over 𝐶, denoted C/𝐶 ,
is defined as follows.

1. Its class of objects Ob(C/𝐶 ) consists of pairs (𝑋, 𝑓 ) in which 𝐶 ∈ C and 𝑓 : 𝑋 → 𝐶 is a morphism in C.

2. Given objects (𝑋, 𝑓 ) and (𝑌, 𝑔) in C/𝐶 , a morphism 𝛼 : (𝑋, 𝑓 ) → (𝑌, 𝑔) consists of a morphism 𝛼 : 𝑋 → 𝑌

in C such that 𝑔 ◦ 𝛼 = 𝑓 , i.e. the following diagram commutes in C:

𝑋 𝑌

𝐶.

𝛼

𝑓 𝑔

3. Composition in C/𝐶 is determined by composition in C. Given morphisms 𝛼 : (𝑋, 𝑓 ) → (𝑌, 𝑔) and
𝛽 : (𝑌, 𝑔) → (𝑍, ℎ) in C/𝐶 , then the composition 𝛽 ◦ 𝛼 : 𝑋 → 𝑍 remains over 𝐶:

𝑋 𝑌 𝑍

𝐶.

𝛽◦𝛼

𝛼

𝑓
𝑔

𝛽

ℎ

We can construct a similar definition and be under an object 𝐶 instead of over.

Definition 1.3.6. Let C be a category. Fix 𝐶 an object in C. The slice category of C under 𝐶, denoted C\𝐶 ,
is defined as follows.

1. Its class of objects Ob(C\𝐶 ) consists of pairs (𝑋, 𝑓 ) in which 𝐶 ∈ C and 𝑓 : 𝐶 → 𝑋 is a morphism in C.
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2. Given objects (𝑋, 𝑓 ) and (𝑌, 𝑔) in C\𝐶 , a morphism 𝛼 : (𝑋, 𝑓 ) → (𝑌, 𝑔) consists of a morphism 𝛼 : 𝑋 → 𝑌

in C such that 𝛼 ◦ 𝑓 = 𝑔, i.e. the following diagram commutes in C:

𝐶

𝑋 𝑌.𝛼

𝑓 𝑔

3. Composition in C\𝐶 is determined by composition in C. Given morphisms 𝛼 : (𝑋, 𝑓 ) → (𝑌, 𝑔) and
𝛽 : (𝑌, 𝑔) → (𝑍, ℎ) in C\𝐶 , then the composition 𝛽 ◦ 𝛼 : 𝑋 → 𝑍 remains under 𝐶:

𝐶

𝑋 𝑌 𝑍.

𝑓
𝑔 ℎ

𝛼

𝛽◦𝛼

𝛽

Example 1.3.7. Consider the category Set. Denote {∗} a singleton. We often write Set\{∗} by Set∗ and
refer to it as the category of pointed sets. A function {∗} → 𝑋 is picking up an element 𝑥0 ∈ 𝑋. Therefore
an object in Set∗ consists of a pair (𝑋, 𝑥0) in which 𝑋 is a set and 𝑥0 is a fixed element in 𝑋. A morphism
(𝑋, 𝑥0) → (𝑌, 𝑦0) in Set∗ is determined by a function 𝑓 : 𝑋 → 𝑌 such that 𝑓 (𝑥0) = 𝑦0.

Exercise 1.3.8. Did the choice of the singleton {∗} mattered in the example above?

Example 1.3.9. Given any set 𝑋, there is a unique function 𝑋 → {∗}. Therefore we see that Set/{∗} is
similar to Set.

1.3.3 Skeleton

Example 1.3.10. Given any category C, we see that isomorphisms define an equivalence relation on objects.
We can therefore define a category C/� for which objects are Ob(C)/� and HomC/� (𝑋,𝑌 ) = HomC (𝑋,𝑌 )/�.
We see that C/� is not isomorphic to C but for a category theorist they should be.

1.3.4 Duality principle

Definition 1.3.11. Given a category C, its opposite category, denoted Cop, is a category with same object
as in C in which we abstractly reverse the directions of the arrows. Formally:

1. Its class of objects is Ob(Cop) = Ob(C).

2. Given objects 𝑋 and 𝑌 , define HomCop (𝑋,𝑌 ) := HomC (𝑌, 𝑋). We rewrite a map 𝑓 : 𝑌 → 𝑋 in C by
𝑓 op : 𝑋 → 𝑌 in Cop.

3. Given objects 𝑋, 𝑌 and 𝑍, define:

HomCop (𝑌, 𝑍) ×HomCop (𝑋,𝑌 ) −→ HomCop (𝑋, 𝑍)
(𝑔op, 𝑓 op) ↦−→ 𝑔op ◦op 𝑓 op := ( 𝑓 ◦ 𝑔)op.

Exercise 1.3.12. Check that Cop defines indeed a category.

Exercise 1.3.13. Prove that (Cop)op = C.

Exercise 1.3.14. Recall that if 𝑀 is a monoid, we can define 𝑀op is opposite monoid. Show that 𝐵(𝑀op) =
(𝐵𝑀)op.
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Example 1.3.15. If ℙ is a poset, we can obtain ℙop by reversing the order. For instance, as in Example
1.2.22, if we view the poset (ℕ, ≤) as a category ℕ:

• • · · · • · · · ,

then its opposite category ℕop can be depicted as:

• • · · · • · · · .

Essentially the above category is the one associated to the poset (ℕ, ≥).

Exercise 1.3.16. Let C be a category and let 𝐶 be a fixed object in C. Show that
(
C/𝐶

)op
= C\𝐶 .

1.4 Functors

Since categories are mathematical structures, there must be a notion of morphisms between them. If we
regard categories as monoids with many objects, these morphisms should be thought as a generalization
of homomorphisms of monoids. These morphisms go from one category to another. Herein lies the core
motivation of category theory: we can travel between the world of groups, or rings, or topological spaces etc,
and observe the interactions between these mathematical worlds. A morphism between categories is called
a functor.

Definition 1.4.1. Let C and D be categories. A functor 𝐹 from C to D, denoted 𝐹 : C→ D, is the following
data.

1. A function on the objects, also denoted 𝐹:

Ob(C) −→ Ob(D)
𝑋 ↦−→ 𝐹 (𝑋).

2. For each pair of objects 𝑋,𝑌 ∈ C, a function on the hom-sets, also denoted 𝐹:

HomC (𝑋,𝑌 ) −→ HomD (𝐹 (𝑋), 𝐹 (𝑌 ))(
𝑋

𝑓
→ 𝑌

)
↦−→

(
𝐹 (𝑋)

𝐹 ( 𝑓 )
→ 𝐹 (𝑌 )

)
This data must follow the following two axioms.

Composition preserving Denote ◦C and ◦D the compositions of morphisms in C and D respectively.
Given 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in C, we have the following equality of morphisms in D:

𝐹 (𝑔 ◦C 𝑓 ) = 𝐹 (𝑔) ◦D 𝐹 ( 𝑓 ).

Identities preserving For any object 𝑋 ∈ C, we have the equality of morphisms in D:

𝐹 (id𝑋) = id𝐹 (𝑋) .

Subsequently, when defining a functor 𝐹 : C→ D we shall specify the functions on objects and morphisms
at the same time as follows:

C −→ D

𝑋 ↦−→ 𝐹 (𝑋)(
𝑋

𝑓
→ 𝑌

)
↦−→

(
𝐹 (𝑋)

𝐹 ( 𝑓 )
→ 𝐹 (𝑌 )

)
.

Once we specify the two functions, we need to verify it is composition and identities preserving.
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Example 1.4.2. Let C be a category. Define the identity functor idC : C→ C as:

idC : C −→ C

𝑋 ↦−→ 𝑋(
𝑋

𝑓
→ 𝑌

)
↦−→

(
𝑋

𝑓
→ 𝑌

)
.

We see immediately that idC (𝑔 ◦ 𝑓 ) = 𝑔 ◦ 𝑓 = idC (𝑔) ◦ idC ( 𝑓 ), for any composable morphisms 𝑓 and 𝑔, and
idC (id𝑋) = id𝑋 = ididC (𝑋) , for all object 𝑋 in C.

Example 1.4.3. Recall from Example 1.2.28 that a monoid can be regarded as a category with one object.
Let 𝑓 : 𝑀 → 𝑁 be a homomorphism of monoids. This defines a functor 𝐵 𝑓 : 𝐵𝑀 → 𝐵𝑁:

𝐵 𝑓 : 𝐵𝑀 −→ 𝐵𝑁

★ ↦−→ ★(
★

𝑚→ ★

)
↦−→

(
★
𝑓 (𝑚)
→ ★

)
.

Let us verify it preserves composition and identities. Given 𝑚, 𝑛 ∈ 𝑀, since 𝑓 is a homomorphism, we have
𝑓 (𝑚𝑛) = 𝑓 (𝑚) 𝑓 (𝑛). This precisely translates to 𝐵 𝑓 (𝑚 ◦ 𝑛) = 𝐵 𝑓 (𝑚) ◦ 𝐵 𝑓 (𝑛). Recall that id★ in 𝐵𝑀 is the
neutral element 𝑒𝑀 of 𝑀. Since 𝑓 is a homomorphism, then 𝑓 (𝑒𝑀 ) = 𝑒𝑁 , the neutral element of 𝑁. Thus
𝐵 𝑓 (id★) = id★. Therefore, 𝐵 𝑓 is indeed a functor.

Exercise 1.4.4. Suppose 𝑀 and 𝑁 are monoids and let 𝐹 : 𝐵𝑀 → 𝐵𝑁 be any functor. Show that there
is a unique homomorphism of monoids 𝑓 : 𝑀 → 𝑁 such that 𝐵 𝑓 = 𝐹. Conclude there is a correspondence
between homomorphisms of monoids and functors between categories with one object.

Example 1.4.5. If 𝐺 and 𝐻 are groups, then a group homomorphism 𝑓 : 𝐺 → 𝐻 defines a functor
𝐵 𝑓 : 𝐵𝐺 → 𝐵𝐻. Moreover, any functor 𝐹 : 𝐵𝐺 → 𝐵𝐻 defines a group homomorphisms 𝑓 : 𝐺 → 𝐻 such that
𝐹 = 𝐵 𝑓 .

Example 1.4.6. A mathematical construction can be viewed as functorial in several ways. Let 𝑅 be a ring.
Recall that we can define the polynomial ring 𝑅[𝑥1, . . . , 𝑥𝑛] with 𝑛-variables. This is functorial if we vary
the ring: i.e. there is a functor:

Ring −→ Ring

𝑅 ↦−→ 𝑅[𝑥1, . . . , 𝑥𝑛]

(
𝑅

𝑓
→ 𝑆

)
↦−→

©­­­«
𝑅[𝑥1, . . . , 𝑥𝑛]

𝑓
→ 𝑆[𝑥1, . . . , 𝑥𝑛]

𝑛∑︁
𝑖, 𝑗≥0

𝑎𝑖 𝑗𝑥
𝑗

𝑖
↦→

𝑛∑︁
𝑖, 𝑗≥0

𝑓 (𝑎𝑖 𝑗 )𝑥 𝑗𝑖

ª®®®¬
On the other hand, we could have also varied the amount of variables. If we denote Fin the full subcategory
of Set spanned by finite sets, then there is a functor:

Fin −→ Ring

{1, . . . , 𝑛} ↦−→ 𝑅[𝑥1, . . . , 𝑥𝑛](
{1, . . . , 𝑛} 𝜎→ {1, . . . , 𝑚}

)
↦−→

©­­­«
𝑅[𝑥1, . . . , 𝑥𝑛]

𝜎→ 𝑅[𝑥1, . . . , 𝑥𝑚]
𝑛∑︁

𝑖, 𝑗≥0
𝑎𝑖 𝑗𝑥

𝑗

𝑖
↦→

𝑛∑︁
𝑖, 𝑗≥0

𝑎𝜎 (𝑖) 𝑗𝑥
𝑗

𝜎 (𝑖)

ª®®®¬
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We can record this fact by capturing the two variances into one functor:

Ring × Fin −→ Ring

(𝑅, {1, . . . , 𝑛}) ↦−→ 𝑅[𝑥1, . . . , 𝑥𝑛]

( 𝑓 , 𝜎) ↦−→
©­­­«
𝑅[𝑥1, . . . , 𝑥𝑛]

( 𝑓 ,𝜎)
→ 𝑆[𝑥1, . . . , 𝑥𝑚]

𝑛∑︁
𝑖, 𝑗≥0

𝑎𝑖 𝑗𝑥
𝑗

𝑖
↦→

𝑛∑︁
𝑖, 𝑗≥0

𝑓 (𝑎𝜎 (𝑖) 𝑗 )𝑥 𝑗𝜎 (𝑖)

ª®®®¬
Exercise 1.4.7. Let 𝑅 be a ring. Recall that for a (possibly infinite) set, we can define 𝑅[𝑋]. Show this
leads to functors Set→ Ring and Ring × Set→ Ring.

Exercise 1.4.8. Let C, D and E be categories. Show that the data of a functor E→ C ×D is equivalent to
the data of two functors E→ C and E→ D.

Example 1.4.9. Recall that for a ring 𝑅 we denote by 𝑅× its group of units. If 𝑓 : 𝑅 → 𝑆 is a ring
homomorphism, then if 𝑟 ∈ 𝑅 is a unit, then so is 𝑓 (𝑟). Thus we can restrict and corestrict 𝑓 × : 𝑅× → 𝑆×.
This defines a functor:

(−)× : Ring −→ Grp

𝑅 ↦−→ 𝑅×(
𝑅

𝑓
→ 𝑆

)
↦−→

(
𝑅×

𝑓 ×

→ 𝑆×
)

Example 1.4.10. A lot of mathematical structures are sets with additional structures. For instance, a
monoid (𝑀, ∗, 𝑒𝑀 ) is a set 𝑀 with the extra data of a multiplication and unity. Moreover, any monoid
homomorphism 𝑀 → 𝑁 is a set map with the extra requirement that it must preserves identity and multi-
plication. Forgetting this data defines a functor:

Mon −→ Set

(𝑀, ∗, 𝑒𝑀 ) ↦−→ 𝑀(
(𝑀, ∗, 𝑒𝑚)

𝑓
→ (𝑁, ⊙, 𝑒𝑁 )

)
↦−→

(
𝑀

𝑓
→ 𝑁

)
Such functor is called a forgetful functor, or underlying functor, and is often denoted 𝑈. It occurs in many
instances: a ring is an Abelian group with a multiplication, an Abelian group is a group in which the
multiplication is commutative, a group is a monoid for which every element has an inverse, and we just saw
that a monoid is a set with extra structure. So we have all these forgetful functors:

Ring→ Ab→ Grp→ Mon→ Set.

Generally they are all denoted 𝑈 and there is usually no ambiguity. In practice, we often omit 𝑈. For
instance we might prefer to say “the set 𝑀”, or “𝑀 regarded as a set” instead of writing 𝑈 (𝑀), for 𝑀 a
monoid and 𝑈 : Mon→ Set.

Example 1.4.11. Given a monoid (𝑀, ∗, 𝑒𝑀 ) we can forget the multiplication but still keep track of the
choice of unity. The assignment (𝑀, ∗, 𝑒𝑀 ) → (𝑀, 𝑒𝑀 ) defines a forgetful functor Mon→ Set∗.

Example 1.4.12. Given a set 𝑋, one can define the free group on 𝑋, denoted 𝐹 (𝑋) formed of all possible
words in 𝑋 together with concatenation as multiplication and the empty word as unity. The definition can
be extended to map of sets and thus we obtain a functor 𝐹 : Set → Grp. There exists a nice connection
between 𝐹 and the forgetful 𝑈 from previous example: given any set 𝑋 and group 𝐺, there is an isomorphism
of sets (i.e. bijection):

HomGrp (𝐹 (𝑋), 𝐺) � HomSet (𝑋,𝑈 (𝐺)).

18



This is precisely a reformulation of the universal property of free groups. In fact, given a forgetful functor
𝑈 : C → Set, the free functor 𝐹 : Set → C will be defined as the unique functor such that we obtain a
“univesal” isomorphism:

HomC (𝐹 (𝑋), 𝐶) � HomSet (𝑋,𝑈 (𝐶)),
given any set 𝑋 and object 𝐶 ∈ C. We will make this idea precise in the next sections, it is important to
notice now that there seems to be a general pattern with free objects and their universal properties.

Exercise 1.4.13. Let 𝑈 : Set∗ → Set be the forgetful functor on pointed sets. Given a set 𝑋, denote
𝑋+ = (𝑋

∐{∗}, ∗) the set where we have added a point ∗ to 𝑋 and chose it as a basepoint. Given a set map
𝑓 : 𝑋 → 𝑌 , extend it to a set map 𝑓+ : 𝑋+ → 𝑌+ by 𝑓 (∗) = ∗. Show this defines a functor (−)+ : Set → Set∗
such that we obtain an isomorphism of sets (i.e. bijection):

HomSet∗ (𝑋+, (𝑌, 𝑦0)) � HomSet (𝑋,𝑌 ),

for any set 𝑋 and pointed set (𝑌, 𝑦0), where we denoted 𝑌 = 𝑈 (𝑌, 𝑦0).

Example 1.4.14. Recall that for any set 𝑆, there are unique set maps ∅ → 𝑆 and 𝑆 → {∗}. In a similar
fashion, given any category C, there are unique functors 𝟘→ C and C→ 𝟙.

Example 1.4.15. Recall that choosing an element 𝑥 in a set 𝑆 defines a map 𝑥 : {∗} → 𝑆. Similarly, choosing
an object 𝑋 in a category C amounts precisely to a functor 𝑋 : 𝟙→ C.

Exercise 1.4.16. Show that choosing a morphism 𝑓 : 𝑋 → 𝑌 in C amounts precisely to a functor 𝑓 : 𝟚→ C.
Show that choosing an isomorphism 𝑓 : 𝑋 → 𝑌 in C amounts precisely to a functor 𝑓 : 𝕀→ C.

One key importance of functors is that they detect non-isomorphic objects. Therefore given a functor
𝐹 : C→ D, if you want to determine if objects in C are not isomorphic, you can use the functor 𝐹 to travel
in a different realm.

Theorem 1.4.17. Let C and D be categories. Let 𝐹 : C → D be a functor. Suppose 𝑓 : 𝑋 → 𝑌 is an
isomorphism in C, then 𝐹 ( 𝑓 ) : 𝐹 (𝑋) → 𝐹 (𝑌 ) is an isomorphism in D and 𝐹 ( 𝑓 )−1 = 𝐹 ( 𝑓 −1). In particular, a
functor preserves isomorphisms: if 𝑋 � 𝑌 in C, then 𝐹 (𝑋) � 𝐹 (𝑌 ) in D.

Proof. Since 𝑓 : 𝑋 → 𝑌 is an isomorphism in C, there exists 𝑓 −1 : 𝑌 → 𝑋 in C such that 𝑓 −1 ◦ 𝑓 = id𝑋 and
𝑓 ◦ 𝑓 −1 = id𝑌 . Therefore:

𝐹 ( 𝑓 −1) ◦ 𝐹 ( 𝑓 ) = 𝐹 ( 𝑓 −1 ◦ 𝑓 ), by composition preserving,

= 𝐹 (id𝑋)
= id𝐹 (𝑋) , by identities preserving.

Similarly, we obtain 𝐹 ( 𝑓 ) ◦ 𝐹 ( 𝑓 −1) = id𝐹 (𝑌 ) . Thus 𝐹 ( 𝑓 ) : 𝐹 (𝑋) → 𝐹 (𝑌 ) is an isomorphism in D with inverse
𝐹 ( 𝑓 −1) : 𝐹 (𝑌 ) → 𝐹 (𝑋). □

Corollary 1.4.18. Let C and D be categories. Let 𝐹 : C→ D be functors. Let 𝑋 and 𝑌 be objects in C. If
𝐹 (𝑋) � 𝐹 (𝑌 ) in D, then 𝑋 � 𝑌 in C.

Example 1.4.19. Two groups cannot be isomorphic if their cardinals were not equal. This follows from
the forgetful functor Ring→ Set.

Example 1.4.20. The ring Z and Q cannot be isomorphic (even though they have the same cardinality)
because Z× � 𝐶2 � Q − {0} = Q×.

Warning 1.4.21. In general, given a functor 𝐹 : C→ D, if 𝐹 (𝑋) � 𝐹 (𝑌 ) in D, there is no reason to expect
that 𝑋 � 𝑌 in C.

Example 1.4.22. Given any category C, the unique functor 𝐹 : C→ 𝟙 forces that 𝐹 (𝑋) � 𝐹 (𝑌 ) for any two
object 𝑋 and 𝑌 in C.
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Example 1.4.23. Consider the functor (−)× : Ring → Grp and the rings Z and Z/3Z. They are not
isomorphic but Z× � 𝐶2 � (Z/3Z)×.

Definition 1.4.24. A functor 𝐹 : C→ D is said to be conservative if it reflects isomorphisms: if 𝑓 : 𝑋 → 𝑌

is in C such that 𝐹 ( 𝑓 ) : 𝐹 (𝑋) → 𝐹 (𝑌 ) is an isomorphism in D, then 𝑓 is an isomorphism in C.

Example 1.4.25. The forgetful functor Grp → Set is conservative: a homomorphism of groups that is a
bijection is an isomorphism. Many of the forgetful functors we have seen are conservative. However, not all
forgetful functors are conservative (example in topology).

Example 1.4.26. Even though the forgetful functor Ring→ Grp is conservative, the functor (−)× : Ring→
Grp is not. For instance, consider the quotient map 𝛾 : Z → Z/3Z. Then 𝛾× : Z× → (Z/3Z)× is an
isomorphism but 𝛾 is not.

Example 1.4.27. Given a functor 𝐹 : C → D and a functor 𝐺 : D → E, then just as we can compose
functions or more generally morphisms in a category, we can compose functors and define 𝐺 ◦ 𝐹 : C→ E to
be defined as follows:

C −→ E

𝐶 ↦−→ 𝐺 (𝐹 (𝐶))(
𝐶

𝑓
→ 𝐶′

)
↦−→

(
𝐺 (𝐹 (𝐶))

𝐺 (𝐹 ( 𝑓 ) )
→ 𝐺 (𝐹 (𝐶′))

)
.

Exercise 1.4.28. Verify that 𝐺 ◦ 𝐹 of Example 1.4.27 is indeed a functor.

It is tempting to consider a category of categories in which objects are categories and morphisms are
functors. Unfortunately we encounter size issues in the same way that there cannot be a set of all sets. To
palliate this issue we can consider a large category of all categories. A large category is not a category with
our terminology as its hom can be a class.

Definition 1.4.29. Define CAT the large category of all categories as follows.

1. Its objects are categories.

2. Given categories C and D, the class HomCAT(C,D) comprises of all functors C→ D.

3. Composition of functors is defined as in Example 1.4.27.

One can check this structure gives indeed a large category, in which the identities are given as in Example
1.4.2.

We shall see soon that the class HomCAT (C,D) can itself be endowed with a category structure that we
will denote Fun(C,D).

To avoid size issues, we may consider instead a category of small categories.

Definition 1.4.30. Define Cat as the full subcategory of CAT spanned by small categories. In this instance,
the morphisms assemble to a set and not a class.

Example 1.4.31. We have seen that for any monoid 𝑀 we can associate a category 𝐵𝑀 with one object,
this defines a functor 𝐵 : Mon→ Cat.

Exercise 1.4.32. Define Grpd as the full subcategory of Cat spanned by groupoids. Show we obtain a
functor 𝐵 : Grp→ Grpd.
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1.5 Embedding categories

Definition 1.5.1. A functor 𝐹 : C → D is said to be faithful if for all objects 𝑋 and 𝑌 in C, the set map
𝐹 : HomC (𝑋,𝑌 ) → HomD (𝐹 (𝑋), 𝐹 (𝑌 )) is injective. In other words, if 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑌 are maps in
C, then if 𝐹 ( 𝑓 ) = 𝐹 (𝑔) as maps 𝐹 (𝑋) → 𝐹 (𝑌 ) in D, then 𝑓 = 𝑔.

Example 1.5.2. Typically, forgetful functors are faithful functors. For instance two homomorphisms of
groups are equal if they are equal as set maps.

Example 1.5.3. Given a category C, there exists a unique functor C → 𝟙. This functor is never faithful
unless C is 𝟘 or 𝟙.

Example 1.5.4. Let 𝑓 : 𝑀 → 𝑁 be a homomorphism of monoids. Then the induced functor 𝐵 𝑓 : 𝐵𝑀 → 𝐵𝑁

is faithful if and only if 𝑓 is injective.

Definition 1.5.5. A concrete category C is a category together with a faithful functor 𝑈 : C→ Set.

Example 1.5.6. The categories Mon, Grp, Ab, Set∗, Ring etc are all concrete categories when considering
their forgetful functors onto Set.

Exercise 1.5.7. Suppose 𝐹 : C→ D is a faithful functor. Show that if a diagram in C commutes in D after
applying 𝐹, then it commutes in C.

Definition 1.5.8. A functor 𝐹 : C → D is said to be full if for all objects 𝑋 and 𝑌 in C the set map
𝐹 : HomC (𝑋,𝑌 ) → HomD ((𝐹 (𝑋), 𝐹 (𝑌 )) is surjective. In other words, given a map 𝑔 : 𝐹 (𝑋) → 𝐹 (𝑌 ) in D,
there exists a map 𝑓 : 𝑋 → 𝑌 in C such that 𝐹 ( 𝑓 ) = 𝑔.

Example 1.5.9. Let 𝑓 : 𝑀 → 𝑁 be a homomorphism of monoids. Then the induced functor 𝐵 𝑓 : 𝐵𝑀 → 𝐵𝑁

is full if and only if 𝑓 is surjective.

Definition 1.5.10. A functor 𝐹 : C→ D is said to be:

• essentially injective if: given objects 𝑋,𝑌 ∈ C, if 𝐹 (𝑋) � 𝐹 (𝑌 ) in D, then 𝑋 � 𝑌 in C;

• essentially surjective if: for all 𝐷 ∈ D, there exists 𝐶 ∈ C such that 𝐹 (𝐶) � 𝐷 in D.

Warning 1.5.11. It is important to not confuse essentially injective with conservative (Definition 1.4.24).
A functor can be essentially injective without being conservative.

Example 1.5.12 (TO DO). Example of a non essentially injective but conservative functor. Example of a
conservative functor but non essentially injective.

Proposition 1.5.13. Let 𝐹 : C→ D be a conservative and full functor. Then 𝐹 is essentially injective.

Proof. Let 𝑋 and 𝑌 be objects in C and suppose 𝐹 (𝑋) � 𝐹 (𝑌 ) in D. This means there exists a map
𝑔 : 𝐹 (𝑋) → 𝐹 (𝑌 ) in D that is an isomorphism. Since 𝐹 is full, there exists a map 𝑓 : 𝑋 → 𝑌 in C such that
𝐹 ( 𝑓 ) = 𝑔. Since 𝐹 is conservative, then 𝑓 must be an isomorphism. Thus 𝑋 � 𝑌 in C. □

Example 1.5.14. Choosing an isomorphism 𝑓 : 𝑋 → 𝑌 in a category C defines a functor 𝑓 : 𝕀→ C that is
conservative and essentially injective but neither full nor faithful in general.

Definition 1.5.15. An embedding of categories is a functor 𝐹 : C → D that is essentially injective and
faithful. In this case we say C is embedded in D. If the functor 𝐹 : C→ D is also full, then we say 𝐹 is a full
embedding of categories and C is fully embedded in D.

Proposition 1.5.16. Given an embedding of categories 𝐹 : C→ D and objects 𝑋,𝑌 in C. Then 𝑋 � 𝑌 in C

if and only if 𝐹 (𝑋) � 𝐹 (𝑌 ) in D.

In a non-full embedding of categories C in D it is possible that one added more morphisms between
objects in D.

21



Example 1.5.17. A subcategory C of a category D defines an embedding of categories C → D. A full
subcategory C of D defines a full embedding of categories. Informally, a (full) embedding of categories
𝐹 : C→ D defines a (full) subcategory in D comprised of the essential image of 𝐹: the smallest subcategory
of D containing all objects in D that are isomorphic to 𝐹 (𝑋) for some 𝑋 ∈ C.
Definition 1.5.18. A functor 𝐹 : C→ D that is both full and faithful is called fully faithful.

Proposition 1.5.19. A fully faithful functor is conservative, and thus in particular essentially injective.

Proof. Let 𝐹 : C→ D be a fully faithful functor. Let 𝑓 : 𝑋 → 𝑌 be a map in C. Suppose 𝐹 ( 𝑓 ) : 𝐹 (𝑋) → 𝐹 (𝑌 )
is an isomorphism in D. This means there exists 𝑔 : 𝐹 (𝑌 ) → 𝐹 (𝑋) in D such that 𝑔 ◦ 𝐹 ( 𝑓 ) = id𝐹 (𝑋) and
𝐹 ( 𝑓 ) ◦ 𝑔 = id𝐹 (𝑌 ) . Since 𝐹 is full, there exists ℎ : 𝑌 → 𝑋 in C such that 𝐹 (ℎ) = 𝑔. We obtain the equalities:

𝐹 (ℎ ◦ 𝑓 ) = 𝐹 (ℎ) ◦ 𝐹 ( 𝑓 ) = 𝑔 ◦ 𝐹 ( 𝑓 ) = id𝐹 (𝑋) = 𝐹 (id𝑋).

As 𝐹 is faithful, we obtain ℎ ◦ 𝑓 = id𝑋. We argue similarly to show 𝑓 ◦ ℎ = id𝑌 . Thus 𝑓 is an isomorphism
in C with inverse ℎ. Thus 𝐹 is conservative. □

Corollary 1.5.20. A functor is fully faithful if and only if it is a full embedding of categories.

1.6 Equivalences of categories and natural transformations

In previous section we saw that we can define a morphism between categories called functors. Omitting
size issues, categories together with their functors assemble themselves into a category CAT. Therefore
this defines a notion of an isomorphism of categories as in Definition 1.2.4. Two categories C and D are
isomorphic, and we write C � D, if there exist functors 𝐹 : C → D and 𝐺 : D → C such that 𝐺 ◦ 𝐹 = idC
and 𝐹 ◦ 𝐺 = idD.

However, the definition is often extremely rigid. Indeed, we require that for any object 𝑋 in C that
𝐺 (𝐹 (𝑋)) is equal to 𝑋, and given any morphism 𝑓 : 𝑋 → 𝑌 , we have 𝐺 (𝐹 ( 𝑓 )) is equal to 𝑓 . But in practice,
it is more likely that 𝐺 (𝐹 (𝑋)) is only isomorphic to 𝑋. In that case, we cannot have 𝐺 (𝐹 ( 𝑓 )) = 𝑓 as they
don’t have same domains and codomains, but we can ask that they remain compatible. In other words, we
would like the following diagram to commute:

𝐺 (𝐹 (𝑋)) 𝑋

𝐺 (𝐹 (𝑌 )) 𝑌,

�

𝐺𝐹 ( 𝑓 ) 𝑓

�

for any morphism 𝑓 : 𝑋 → 𝑌 in C. If the diagrams above was not commutative then if means we have lost
information on the morphisms in C.

We make precise the notion here. We begin by two motivating examples.

Example 1.6.1. Let F be a field. Our first example is motivated from the fact that every finite dimensional
F-vector space is isomorphic (but not equal) to F𝑛 for some 𝑛 ≥ 0. First recall we have defined the category
Mat(F) of matrices with coefficients in F. Denote VectfdF the category for which objects are pairs (𝑉,B) where
𝑉 is a finite dimensional F-vector space and B is an ordered (finite) basis of 𝑉 . Morphisms (𝑉,B) → (𝑉 ′,B′)
are linear transformations 𝑉 → 𝑉 ′ with no added requirements. Therefore VectfdF is a full subcategory of
VectF. Recall that a matrix 𝐴 ∈ M𝑚×𝑛 (F) can be regarded as a linear transformation:

𝐴 : (F𝑛, S) −→ (F𝑚, S)
𝑣 ↦−→ 𝐴𝑣.

Here we denote S the standard basis of F𝑛. This perspective defines a functor:

Mat(F) −→ VectfdF
𝑛 ↦−→ (F𝑛, S)

𝐴 ∈ M𝑚×𝑛 (F) ↦−→
(
𝐴 : (F𝑛, S) → (F𝑚, S)

)
.
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Let B = (𝑏1, . . . , 𝑏𝑛) be a basis of a vector space 𝑉 . Then for any 𝑣 ∈ 𝑉 , there exist unique scalars 𝜆1, . . . , 𝜆𝑛 ∈

F𝑛 such that 𝑣 = 𝜆1𝑏1 + · · · 𝜆𝑛𝑏𝑛. This defines the vector [𝑣]B =


𝜆1
...

𝜆𝑛

 in F𝑛. Given a linear transformation

𝑇 : (𝑉,B) → (𝑉 ′,B′), we denote the matrix [𝑇]B′
B

comprised of the vectors [𝑇 (𝑏1)]B′ , . . . , [𝑇 (𝑏𝑛)]B′ in its
columns. We obtain a functor:

VectfdF −→ Mat(F)
(𝑉,B) ↦−→ dim(𝑉)(

(𝑉,B) 𝑇→ (𝑉 ′,B′)
)
↦−→ [𝑇]B′B

One one hand the composition:

𝑛 ↦−→ (F𝑛, S) ↦−→ dim(F𝑛)

is the identity on objects and on morphisms. On the other hand, the composition:

(𝑉,B) ↦−→ dim(𝑉) ↦−→ (Fdim(𝑉 ) , S)

is in general only an isomorphism given by:

(𝑉,B) �−→ (Fdim(𝑉 ) , S)
𝑣 ↦−→ [𝑣]B.

Notice that these isomorphisms are compatible: given any linear transformation 𝑇 : (𝑉,B) → (𝑉 ′,B′), we
have the commutative diagram:

(𝑉,B) (Fdim(𝑉 ) , S)

(𝑉 ′,B′) (Fdim(𝑉 ′ ) , S)

�

𝑇 [𝑇 ]B′
B

�

This expresses the familiar equation [𝑇 (𝑣)]B′ = [𝑇]B
′

B
[𝑣]B. Therefore, although VectfdF and Mat(F) are not

isomorphic, they seem to be equivalent in many regards.

Example 1.6.2. From our perspective, a ring is always unital. We shall explain why here.
A ring 𝑅 is said to be be augmented if there is a ring homomorphism 𝜀 : 𝑅 → Z. In fact we can define

the category of augmented rings as Ring/Z. A non-unital ring 𝑅 is a ring without the axiom of unity, and a
non-unital ring homomorphism is a ring that doesn’t preserve unity. This defines a category Ring◦.

Given a non-unital ring 𝑅, let 𝑅+ = 𝑅 ⊕ Z. Then one can check that 𝑅+ is a (unital) ring with unity
(0𝑅, 1) and is augmented via the quotient map 𝑅+ → 𝑅+/𝑅 � Z. Define a functor:

(−)+ : Ring◦ −→ Ring/Z

𝑅 → 𝑅+(
𝑅

𝑓
→ 𝑆

)
↦−→

(
𝑅+

𝑓 ⊕id
→ 𝑆+

)
.

Given an augmented ring (𝑅, 𝜀), we can denote 𝑅− = ker(𝜀), it is a non-unital ring.

(−)− : Ring/𝑍 −→ Ring◦

(𝑅, 𝜀) ↦−→ 𝑅−(
𝑅 → 𝑆

)
↦−→

(
𝑅− → 𝑆−

)
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Suppose (𝑅, 𝜀) is an augmented ring. Then ((𝑅, 𝜀)−)+ = ker(𝜀) ⊕ Z. Since we have an isomorphism:

ker(𝜀) ⊕ Z −→ 𝑅

(𝑟, 1) ↦−→ 𝑟 + 1𝑅

Similarly, given a non unital ring 𝑅, then (𝑅+)− = ker(𝑅 ⊕ Z → Z) � 𝑅. These are not equal but really
isomorphisms. One can view the category of non-unital rings Ring◦ as living inside the category of unital
rings Ring, as Ring/Z is a (non full) subcategory of Ring.

The above example hopefully served as motivation for the need of this coherence data on morphism.

Definition 1.6.3. Let 𝐹 : C → D and 𝐺 : C → D be functors. A natural transformation from 𝐹 to 𝐺,
denoted 𝛼 : 𝐹 ⇒ 𝐺 is a collection of morphisms {𝛼𝑋 : 𝐹 (𝑋) → 𝐺 (𝑋) | 𝑋 ∈ C} in D subject to the following
requirement. For any morphism 𝑓 : 𝑋 → 𝑌 in C, the following diagram commutes in D:

𝐹 (𝑋) 𝐺 (𝑋)

𝐹 (𝑌 ) 𝐺 (𝑌 )

𝛼𝑋

𝐹 ( 𝑓 ) 𝐺 ( 𝑓 )

𝛼𝑌

If 𝛼𝑋 : 𝐹 (𝑋) → 𝐺 (𝑋) is an isomorphism in D for each 𝑋 ∈ C, then we say 𝛼 is a natural isomorphism and

we write it as 𝛼 : 𝐹
∼⇒ 𝐺.

Notation 1.6.4. Instead of saying “let 𝛼 : 𝐹 ⇒ 𝐺 be a natural transformation between functors 𝐹, 𝐺 : C→
D”, we may compactly refer to the data as a diagram:

C D

𝐹

𝐺

𝛼

TO FINISH...

1.7 Yoneda Lemma

We begin by defining what representable means in the categorical sense. Our result will be stated for the
contravariant case. However, all the work in this section can be dualized for covariant functors.

We shall always assume C to be a locally small category, i.e., a category such that for any object 𝐶 and 𝐶′

in C, the class of morphisms C(𝐶,𝐶′) is a set. Otherwise we extend Grothendieck universe to extend what
we mean by a set.

Let 𝐶0 be a fixed object of C. We define the functor:

C(−, 𝐶0) : Cop −→ Set

𝐶 ↦−→ C(𝐶,𝐶0)

𝐶
𝑓
→ 𝐶′ ↦−→ 𝑓 ∗ : C(𝐶′, 𝐶0) → C(𝐶,𝐶0),

where 𝑓 ∗ (𝜑) = 𝜑 ◦ 𝑓 , for any 𝜑 in C(𝐶′, 𝐶0).

Definition 1.7.1 (Representable Contravariant Functor). Let C be a locally small category. A functor
𝐹 : Cop → Set is said to be representable if there is an object 𝐶0 in C and a natural isomorphism:

𝑒 : C(−, 𝐶0) ⇒ 𝐹.

We say that 𝐶0 represents 𝐹, and 𝐶0 is a classifying object for 𝐹. Similarly, a functor 𝐹 : C → Set is
representable if there is an object 𝐶0 and a natural isomorphism C(𝐶0,−) ⇒ 𝐹.
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The following lemma, known as the Yoneda Lemma, relates natural transformations 𝑒 : C(−, 𝐶0) ⇒ 𝐹

with elements of 𝐹 (𝐶0).

Lemma 1.7.2 (Yoneda). Let 𝐹 : Cop → Set be a functor. For any object 𝐶0 in C, there is a one-to-one
correspondance between natural transformation 𝑒 : C(−, 𝐶0) ⇒ 𝐹 and elements 𝑢 in 𝐹 (𝐶0), which is given,
for any object 𝐶 in C, by:

𝑒𝐶 : C(𝐶,𝐶0) −→ 𝐹 (𝐶)
𝜑 ↦−→ 𝐹 (𝜑) (𝑢).

Proof. Suppose we are given a natural transformation 𝑒 : C(−, 𝐶0) ⇒ 𝐹. In particular, for any morphism 𝜑

in C(𝐶,𝐶0), the following diagram commutes:

C(𝐶0, 𝐶0) 𝐹 (𝐶0)

C(𝐶,𝐶0) 𝐹 (𝐶).

𝜑∗

𝑒𝐶0

𝐹 (𝜑)
𝑒𝐶

Evaluating with the identity morphism id𝐶0
, we obtain an element 𝑢 = 𝑒𝐶0

(id𝐶0
) in 𝐹 (𝐶0); and commutativity

of the previous diagram gives: 𝑒𝐶 (𝜑) = 𝐹 (𝜑) (𝑢).
Conversely, if we are given 𝑢 in 𝐹 (𝐶0), define 𝑒𝐶 : C(𝐶,𝐶0) −→ 𝐹 (𝐶) as before, for all objects 𝐶. Naturality
follows directly. □

The Yoneda Lemma leads to the following definition.

Definition 1.7.3 (Universal Elements). If 𝐹 : Cop → Set is a representable functor, given a natural isomor-
phism 𝑒 : C(−, 𝐶0) ⇒ 𝐹, the associated element according to the Yoneda Lemma 𝑢𝐹 := 𝑒𝐶0

(id𝐶0
) ∈ 𝐹 (𝐶0) is

called the universal element of 𝐹.

Example 1.7.4. Fix a group homomorphism 𝑓 : 𝐺 → 𝐺′. Given any group 𝐻, define 𝐻 𝑓 to be the set of
group homomorphisms ℎ : 𝐻 → 𝐺 such that 𝑓 ◦ ℎ = 0. Given a group homomorphism 𝜑 : 𝐻 → 𝐻′, we get a
set map 𝜑∗ : 𝐻′

𝑓
→ 𝐻 𝑓 sending ℎ : 𝐻

′ → 𝐺 to ℎ ◦ 𝜑. This defines a functor:

(−) 𝑓 : Grpop −→ Set

𝐻 ↦−→ 𝐻 𝑓(
𝐻

𝜑
→ 𝐻′

)
↦−→

(
𝐻′𝑓

𝑓 ∗

→ 𝐻 𝑓

)
.

The universal property of the kernel of 𝑓 says exactly that this functor is representable by ker( 𝑓 ) and that
its universal element is the inclusion ker( 𝑓 ) ↩→ 𝐺, i.e. we have Grp(𝐻, ker( 𝑓 )) � 𝐻 𝑓 . Any universal property
you have encountered can be expressed this way (or in covariant way).

Notice that we said “the” universal element. This suggests some kind of relations between universal
elements, and so between classifying objects. We start by the following proposition, that will be crucial
subsequently.

Proposition 1.7.5. Let 𝐹, 𝐺 : Cop → Set be functors represented by 𝐶0 and 𝐶′0 with natural isomorphisms
𝑒 : C(−, 𝐶0) ⇒ 𝐹 and 𝑒′ : C(−, 𝐶′0) ⇒ 𝐺. If there is a natural transformation 𝜅 : 𝐹 ⇒ 𝐺, then there exists a
unique morphism 𝜌 : 𝐶0 → 𝐶′0 such that the following diagram commutes:

C(𝐶,𝐶0) C(𝐶,𝐶′0)

𝐹 (𝐶) 𝐺 (𝐶),

�𝑒𝐶

𝜌∗

𝑒′
𝐶�

𝜅𝐶

(1.6)

for any object 𝐶 in C. Moreover, if 𝜅 is a natural isomorphism, then 𝜌 is an isomorphism in C.
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Proof. Let us first define 𝜌 : 𝐶0 → 𝐶′0. The universal element of 𝐹 is given by: 𝑢𝐹 = 𝑒𝐶0
(id𝐶0

) ∈ 𝐹 (𝐶0).
Taking its image with 𝜅𝐶0

, we obtain an element 𝜅𝐶0
(𝑢𝐹) in 𝐺 (𝐶0). Since 𝑒′

𝐶0
: C(𝐶0, 𝐶

′
0) → 𝐺 (𝐶0) is a

bijection, there is a unique element 𝜌 in C(𝐶0, 𝐶
′
0), such that 𝑒′

𝐶0
(𝜌) = 𝜅𝐶0

(𝑢𝐹).
We now prove the commutativity of the diagram (1.6). Let 𝜑 be any morphism in C(𝐶,𝐶0). On the one
hand we have:

𝜅𝐶 ◦ 𝑒𝑐 (𝜑) = 𝜅𝐶𝐹 (𝜑) (𝑢𝐹), by Yoneda Lemma,

= 𝐺 (𝜑)𝜅𝐶0
(𝑢𝐹), by naturality of 𝜅,

= 𝐺 (𝜑)𝑒′𝐶0
(𝜌), by definition of 𝜌,

and on the other hand, we have:

𝑒′𝐶 ◦ 𝜌∗ (𝜑) = 𝑒′𝐶 (𝜌 ◦ 𝜑),
= 𝐺 (𝜌 ◦ 𝜑) (𝑢𝐺), by Yoneda Lemma,

= 𝐺 (𝜑) ◦ 𝐺 (𝜌) (𝑢𝐺)
= 𝐺 (𝜑)𝑒′𝐶0

(𝜌), by Yoneda Lemma.

We have just proved that the commutativity of diagram (1.6). Uniqueness of 𝜌 follows immediately from its
construction since 𝜌 is the unique morphism making the diagram commute in the case 𝐶 = 𝐶0.

Let 𝜅 be a natural isomorphism. This means that for any object 𝐶 in C, the morphism 𝜅𝐶 : 𝐹 (𝐶) → 𝐺 (𝐶)
is bijective. So there exists an inverse 𝜅−1

𝐶
: 𝐺 (𝐶) → 𝐹 (𝐶), for each object 𝐶. This obviously defines a natural

transformation 𝜅 : 𝐺 ⇒ 𝐹, where 𝜅𝐶 = 𝜅−1
𝐶
. Applying the first part of this proof, there is a unique morphism

𝜌 : 𝐶′0 → 𝐶0 corresponding to 𝜅. Moreover, we have 𝜅𝐶 ◦𝜅𝐶 = id𝐹 (𝐶 ) and 𝜅𝐶 ◦𝜅𝐶 = id𝐺 (𝐶 ) , for every object 𝐶.
But these composites of natural transformations correspond respectively to 𝜌 ◦ 𝜌 and 𝜌 ◦ 𝜌. By uniqueness,
we obtain 𝜌 ◦ 𝜌 = id𝐶0

and 𝜌 ◦ 𝜌 = id𝐶′0 , and so 𝜌 is an isomorphism. □

We can now prove that classifying objects are unique up to isomorphism.

Corollary 1.7.7. Let 𝐹 : Cop → Set be a representable functor. If 𝐶0 and 𝐶′0 are representing objects of 𝐹
with universal elements 𝑢𝐹 and 𝑢′

𝐹
respectively, then there is an isomorphism 𝜌 : 𝐶0 → 𝐶′0 in C such that

𝐹 (𝜌) (𝑢′
𝐹
) = 𝑢𝐹 .

Proof. There are natural isomorphisms 𝑒 : C(−, 𝐶0) ⇒ 𝐹 and 𝑒′ : C(−, 𝐶′0) ⇒ 𝐹. Taking the composites,
we obtain another natural transformation: 𝜆 := 𝑒′−1 ◦ 𝑒 : C(−, 𝐶0) ⇒ C(−, 𝐶′0), which is obviously a natural
isomorphism. By Proposition 1.7.5, 𝜆 determines a unique isomorphism 𝜌 : 𝐶0 → 𝐶′0, such that 𝜆𝐶 ( 𝑓 ) = 𝜌◦ 𝑓 ,
for any object 𝐶 and morphism 𝑓 : 𝐶 → 𝐶0. In particular 𝜆𝐶0

(id𝐶0
) = 𝜌.

The universal elements 𝑢𝐹 and 𝑢′
𝐹
are given respectively by 𝑒𝐶0

(id𝐶0
) and 𝑒′

𝐶′0
(id𝐶′0 ). We get:

𝐹 (𝜌) (𝑢′𝐹) = 𝐹 (𝜌) ◦ 𝑒′𝐶0
(id𝐶′0 )

= 𝑒′𝐶0
(𝜌), by naturality of 𝑒′,

= 𝑒′𝐶0
◦ 𝜆𝐶0

(id𝐶0
)

= 𝑒𝐶0
(id𝐶0

), since 𝑒′ ◦ 𝜆 = 𝑒,

= 𝑢𝐹 ,

and so 𝐹 (𝜌) (𝑢′
𝐹
) = 𝑢𝐹 as desired. □

Corollary 1.7.8. The Yoneda lemma determines a fully faithful embedding:

Y : C −→ Fun(Cop, Set)
𝐶0 ↦−→ C(−, 𝐶0)(

𝐶0
𝑓
→ 𝐶′0

)
↦−→

(
C(−, 𝐶0)

𝑓∗⇒ C(−, 𝐶′0)
)
.

Here 𝑓∗ is the natural transformation defined for all 𝐶 ∈ C as the set map 𝑓∗ : C(𝐶,𝐶0) → C(𝐶,𝐶′0) where
𝑓∗ (𝜑) = 𝑓 ◦ 𝜑 for all 𝜑 : 𝐶 → 𝐶0 in C.
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What this corollary is saying is that in particular, we have for any two objects 𝑋 and 𝑌 in C that:

𝑋 � 𝑌 ⇔ C(𝐶, 𝑋) � C(𝐶,𝑌 ), ∀𝐶 ∈ C.
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Chapter 2

Homotopy theories

2.1 Simplicial sets

Let Δ denote the simplex category, whose objects are ordered sets of the form [𝑛] = {0, 1, . . . , 𝑛}, and whose
morphisms are order-preserving maps. The morphisms of Δ are generated by cofaces and codegeneracies.
For example, cofaces are of the form

𝑑0, 𝑑1 : [0] → [1],

skipping 0 or 1 in [1], etc. The codegeneracies look like 𝑠0 : [1] → [0] which “repeat” an element. The
cofaces and codegeneracies satisfy certain cosimplicial identities.

If C is a category, we let 𝑠C = CΔop
denote the category of simplicial objects in C. If C = Set, we write

sSet := SetΔ
op

and call it the category of simplicial sets. A simplicial set 𝑋• ∈ sSet consists of sets 𝑋0, 𝑋1, . . .

together with face and degeneracy maps satisfying the simplicial identities.

Example 2.1.1 (The nerve of a small category). Let C ∈ Cat be a small category. We let 𝑁•C denote the
simplicial set with 𝑁0C = ObC, 𝑁1C = MorC, and 𝑁𝑛C the set of 𝑛 composable morphisms in C. That is,

𝑁𝑛C = 𝑁1C ×𝑁0C · · · ×𝑁0C 𝑁1C.

The face maps are given by source/target/composition, and the degeneracies insert an identity morphism.

Example 2.1.2. By the Yoneda embedding, we get a functor

Δ𝑛 := HomΔ (−, [𝑛]) : Δop → Set.

If 𝑋• is a simplicial set, then the set of 𝑛-simplices 𝑋𝑛 is in bijection with HomsSet (Δ𝑛, 𝑋•).

Example 2.1.3 (Dold–Kan). There is an isomorphism Ch≥0
𝑅

Γ−→ 𝑠Mod𝑅, where Γ𝑚𝐶• = ⊕[𝑛]↠[𝑘 ]𝐶𝑘 . The
faces and degeneracies are left as an exercise.

Example 2.1.4. Define Δ𝑛Top ⊆ R
𝑛+1 by{
(𝑡0, . . . , 𝑡𝑛) ∈ R𝑛+1 : 0 ≤ 𝑡𝑖 ≤ 1,

∑︁
𝑡𝑖 = 1

}
.

View [𝑛] = {𝑣0, . . . , 𝑣𝑛}, for 𝑣𝑖 = (0, . . . , 0, 1, 0, . . . , 0) with a 1 at the 𝑖th place. Then if 𝛼 : [𝑚] → [𝑛] in Δ,
we can define 𝛼(𝑣𝑖) = 𝑣𝛼(𝑖) . Extend linearly to get 𝛼∗ : Δ𝑚Top → Δ𝑛Top. Then Δ•Top is a cosimplicial topological
space.

Example 2.1.5. If 𝑋 ∈ Top, we can define a simplicial set Sing• (𝑋) ∈ sSet by Sing𝑛 (𝑋) = HomTop

(
Δ𝑛Top, 𝑋

)
.

29



Definition 2.1.6. If 𝑋• ∈ sSet, its geometric realization is the topological space

|𝑋• | = ⨿𝑛≥0𝑋𝑛 × Δ𝑛Top/∼,

where (𝑥, 𝑠) ∼ (𝑦, 𝑡) if and only if there is some 𝛼 : [𝑚] → [𝑛] so that 𝛼∗𝑦 = 𝑥 and 𝛼∗𝑠 = 𝑡.

Example 2.1.7. For 𝑛 ≥ 0, |Δ𝑛• | � Δ𝑛Top.

Exercise 2.1.8. For any simplicial set 𝑋, |𝑋• | is always a CW complex.

Exercise 2.1.9. There is an adjunction | − | : sSet⇄ Top : Sing(−)

Definition 2.1.10. A map 𝑋• → 𝑌• is a weak homotopy equivalence in sSet if |𝑋• |
∼−→ |𝑌• | is a weak homotopy

equivalence of spaces.

Theorem 2.1.11 (Quillen). Simplicial sets up to weak equivalence is equivalent to topological spaces up to
weak homotopy equivalence. Moreover, for any 𝑋 ∈ Top, |Sing(𝑋) | is weakly equivalent to 𝑋.

The homotopy hypothesis (continued). If we are interested in studying Top up to weak homotopy
equivalences, we may equivalently study sSet up to weak equivalence; the relationship between the two
categories was given by the geometric realization / singular complex adjunction.

Recall that Δ𝑛 = HomΔ (−, [𝑛]). We define the 𝑘th horn Λ𝑛
𝑘
⊆ Δ𝑛 as a coequalizer in sSet( ∐

0≤𝑖< 𝑗≤𝑛
Δ𝑛−2 ⇒

∐
𝑖≠𝑘

Δ𝑛−1

)
→ Λ𝑛𝑘 ,

where the two maps are 𝛿 𝑗−1 and 𝛿𝑖. The geometric realization of Λ𝑛
𝑘
is the topological 𝑛-simplex, with the

middle and the face opposite the 𝑘th edge removed.

Definition 2.1.12. A simplicial set 𝑌 ∈ sSet is a Kan complex if for all 𝑘 ≤ 𝑛, and for every Λ𝑛
𝑘
→ 𝑌 , there

exists a (not necessarily unique) lift:

Λ𝑛
𝑘

𝑌

Δ𝑛

Exercise 2.1.13. A simplicial set 𝑌 is a Kan complex if and only if for any (𝑛−1)-simplices 𝑦1, . . . , 𝑦𝑘−1, 𝑦𝑘+1, . . . , 𝑦𝑛
such that 𝑑𝑖𝑦 𝑗 = 𝑑 𝑗−1𝑦𝑖 for 𝑖 < 𝑗 , 𝑖, 𝑗 ≠ 𝑘, there exists an 𝑛-simplex 𝑦 such that 𝑑𝑖𝑦 = 𝑦𝑖 for all 𝑖 ≠ 𝑘.
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Exercise 2.1.14. The simplicial set Sing(𝑋) is always a Kan complex for any 𝑋 ∈ Top.

Exercise 2.1.15. The simplicial set Δ𝑛 is not a Kan complex for 𝑛 ≥ 1.

Exercise 2.1.16. If 𝑋 ∈ 𝑠Grp, then the underlying simplicial set of 𝑋 is always a Kan complex.

We will see later that, up to weak homotopy equivalence, every simplicial set is a Kan complex.
Recall the Dold-Kan correspondence

𝑠ModZ � Ch≥0Z ,

which sends weak homotopy equivalences to quasi-isomorphisms. Given a simplicial set 𝑋∗, we can take an
associated simplicial abelian group Z[𝑋∗] by taking the free group on 𝑛-simplices at level 𝑛. We can ask
what Z[𝑋∗] corresponds to as a chain complex. One answer is that

Z[Sing(𝑋∗)] ↔ 𝐶∗ (𝑋;Z),

which tells us that

𝜋∗ (Z [Sing(𝑋)]) � 𝐻∗ (𝑋;Z).

In some sense, we can view Z[Sing(𝑋)] as being (equivalent to) the free commutative monoid on 𝑋. This
statement is what is known as the Dold-Thom theorem.

Homotopy hypothesis: Spaces (up to weak equivalence) are ∞-groupoids. For us, spaces up to weak
equivalences correspond to Kan complexes.

Given 𝑋 ∈ Kan, we can call 𝑋0 the objects, and 𝑋1 the morphisms. The horn filling conditions imply
that we can compose and invert morphisms in 𝑋1, witnessed by simplices in 𝑋2.

Definition 2.1.17. A quasi-category (i.e. ∞-category) is a simplicial set with inner horn lifting property.
That is, we can lift against horns Λ𝑛

𝑘
for 0 < 𝑘 < 𝑛.

Exercise 2.1.18. A quasi-category has unique horn filling if and only if it is isomorphic to the nerve of a
1-category.

2.2 Model structures

Vista: Every nice infinity category is equivalent (in some sense) to a model category.

Notation 2.2.1. Let M be a category, and 𝜒 ⊆ M a class of morphisms. We define LLP(𝜒) to be the class
of morphisms in M so that 𝑓 has the left lifting property with respect to all morphisms in 𝜒:

· ·

· ·
𝑓 ∈ 𝜒

Similarly we can define 𝑓 ∈ RLP(𝜒) by

· ·

· ·
𝜒 ∋ 𝑓

Definition 2.2.2. A weak factorization system on a category M consists of a pair (C,F) of classes of
morphisms such that
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1. Given any 𝑓 : 𝑋 → 𝑌 in M, it factors (not necessarily uniquely) as

𝑋 𝑌

𝑊

𝑓

C∋ ∈F

2. C = LLP(F) and F = RLP(C).

Example 2.2.3. In Set, the monomorphisms and epimorphisms give a weak factorization system. A fac-
torization is

𝑋 𝑌

𝑋 × 𝑌

𝑓

id𝑋× 𝑓 𝜋𝑌

Definition 2.2.4. A model structure on M consists of three classes of morphisms:

𝑊 weak equivalences
Cof cofibrations
Fib fibrations

We use the notation C̃of := Cof ∩ 𝑊 and F̃ib = Fib ∩ 𝑊 , and call these trivial cofibrations (resp. trivial
fibrations). These collections of morphisms are subject to the constraint that

1. M is bicomplete (all limits and colimits)1

2. 𝑊 satisfies 2-out-of-3 property2

3.
(
Cof , F̃ib

)
and

(
C̃of ,Fib

)
are weak factorization systems.

Terminology 2.2.5. A category with a model structure is referred to as a model category.

Notation 2.2.6. We will decorate each class of morphisms as

1We might also require finitely bicomplete.
2If 𝑓 and 𝑔 are composable, and any two of 𝑓 , 𝑔, 𝑔 𝑓 are in 𝑊 then so is the third.
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𝑊
∼−→

Cof ↩−→
Fib ↠

Exercise 2.2.7. The collections 𝑊 , Cof, and Fib are closed under retracts: that is, if we have a diagram

· · ·

· · ·
𝑓 𝑔 𝑓

then if 𝑔 ∈ 𝑊 (resp. Cof or Fib) then 𝑓 ∈ 𝑊 (resp. Cof or Fib).

Definition 2.2.8. Let M be a model category, and let ∅ ∈ M the initial object and ∗ ∈ M the terminal
object.

• We say that 𝑋 ∈ M is cofibrant if the unique map ∅ → 𝑋 is a cofibration.

• We say that 𝑋 ∈ M is fibrant if the unique map 𝑋 → ∗ is a fibration.

• We say that 𝑋 is a cofibrant replacement of 𝑋 if

∅ 𝑋

𝑋

∼

• We say that 𝑋 is a fibrant replacement of 𝑋 if

𝑋 ∗

𝑋

∼

Example 2.2.9. Let M = Top, 𝑊 = weak homotopy equivalences, Cof = relative CW complexes3 The
fibrations are determined by Fib = RLP(C̃of) or, equivalently, RLP(𝐷𝑛 → 𝐷𝑛 × 𝐼). Every object is fibrant,
and the cofibrant objects are precisely the CW complexes. Cofibrant replacement is cellular approximation.

3𝐴 ↩−→ 𝑋 is a relative CW complex if 𝑋 is built out of 𝐴 by attaching cells.
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Proposition 2.2.10. Identities and isomorphisms are weak equivalences in a model category.

Proof. For any 𝑋 ∈ M, we can fibrantly replace it to get 𝑋
∼
↩→ 𝑋. Consider the commutative diagram

𝑋 𝑋

𝑋.

id

∼ ∼

By 2-out-of-3, the identity id : 𝑋 → 𝑋 is also a weak equivalence. More generally if 𝑓 : 𝑋 → 𝑌 is an
isomorphism in M, then by the diagram

𝑋 𝑌 𝑋

𝑌 𝑌 𝑌,

𝑓

𝑓 𝑓 −1

𝑓

we see that 𝑓 is contained in 𝑊 . □

If (C,F) is a weak factorization system, then both C and F are closed under retracts. Hence Cof, C̃of,
Fib, F̃ib are closed under retracts. As an exercise, show that 𝑊 is also closed under retracts.

Exercise 2.2.11. A category M is a model category if and only if Mop is a model category.

Theorem 2.2.12. Cofibrations are closed under pushouts and coproducts.

Proof. Given any test square, we can try to lift:

𝑋 𝑌 𝐴

𝑍 𝑃 𝐵.

∼
⌜

This map is constructed by universal property of the pushout:

𝑋 𝑌

𝑍 𝑃

𝐴.

⌜

∃!

For coproducts, we can take 𝑋𝑖 ↩−→ 𝑌𝑖 for 𝑖 ∈ 𝐽. Let’s try to lift:

𝑋𝑖 ⨿𝑖𝑋𝑖 𝐴

𝑌𝑖 ⨿𝑖𝑌𝑖 𝐵.

∼

We know that each 𝑋𝑖 ↩−→ 𝑌𝑖 is a cofibration hence it lifts against the big square. By universal property a
map ⨿𝑖𝑌𝑖 → 𝐴 exists. □

Example 2.2.13. If C is a bicomplete category, then C has a model structure where 𝑊 is the isomorphisms,
and Cof = Fib = MorC.

Example 2.2.14. If M = Top, the Quillen model structure is given by
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• 𝑊 = weak homotopy equivalences,

• Cof = retracts of relative CW complexes,

• Fib = Serre fibrations (RLP(𝐷𝑛 ↩−→ 𝐷𝑛 × 𝐼)).

Example 2.2.15. The Strøm (or Hurewicz) model structure on Top is given by

• 𝑊 = homotopy equivalences,

• Fib = Hurewicz fibrations (RLP(𝐴→ 𝐴 × 𝐼) for all 𝐴 ∈ Top),

• Cof = closed cofibrations in Top.

Fibrant replacement in the Strøm model structure looks like

𝑋 𝑌

𝑀 𝑓

𝑓

≃

Where 𝑀 𝑓 = (𝑋 × 𝐼) ∪𝑋 𝑌 is the mapping cylinder.

Example 2.2.16. The Kan model structure on sSet is given by

• 𝑊 = weak homotopy equivalences,

• Cof = monomorphisms (levelwise injections),

• Fib = Kan fibrations (RLP(Λ𝑛
𝑘
→ Δ𝑛) for all 0 ≤ 𝑘 ≤ 𝑛).

Everything is cofibrant here (since the empty simplicial set injects into everything). Fibrant objects are Kan
complexes. Thus, every simplicial set is weakly equivalent to a Kan complex!

Theorem 2.2.17 (Milnor). The natural map 𝑋 → Sing( |𝑋 |) is a weak homotopy equivalence for any
simplicial set 𝑋. (See also Kerodon, 3.5.4.1.)

Definition 2.2.18. Let C be a category, and 𝑊 ⊆ C a subcategory. A functor 𝐹 : C → D is called the
localization of C with respect to 𝑊 if:

1. 𝐹 ( 𝑓 ) ∈ isoD if 𝑓 ∈ Mor𝑊 ,
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2. For any other 𝐹′ satisfying (1), we have

C D′

C

𝐹′

𝐹
∃!

.

We let C→ C[𝑊−1] denote the localization.

Here is a naive way to construct C[𝑊−1]: we take the free category on C and “𝑊−1.” That is, we take the
same objects, but allow morphisms to be “zigzags” of morphisms forward in C and morphisms backwards in
𝑊 , and we mod out by the relation that things in 𝑊 become isomorphisms. There are size issues here.

Theorem 2.2.19. If M is a model category, then localization M→M[𝑊−1] exists. We denote by Ho(M) =
M[𝑊−1] the homotopy category of M.

Recall in Top that 𝑓 ≃ 𝑔 : 𝑋 → 𝑌 if there is a map 𝐻 : 𝑋 × 𝐼 → 𝑌 so that 𝐻 (−, 0) = 𝑓 and 𝐻 (−, 1) = 𝑔.

Definition 2.2.20. Let M be a model category. A cylinder object on 𝑋 ∈ M is defined to be

𝑋 ⨿ 𝑋 𝑌

Cyl(𝑋)

∇

∼

The construction of cylinder objects is not functorial.

A (left) homotopy from 𝑓 to 𝑔 is a map 𝐻 : Cyl(𝑋) → 𝑌 such that 𝐻 ◦ 𝑖0 = 𝑓 and 𝐻 ◦ 𝑖1 = 𝑔. We denote
this by 𝑓 ≃ 𝑔.

Proposition 2.2.21. We have that 𝑖0 : 𝑋 → Cyl(𝑋) is a weak equivalence (and same for 𝑖1).

Proof. We have

𝑋 𝑋 ⨿ 𝑋 𝑌

Cyl(𝑋)

id

𝑖0

∇

∼

By 2-out-of-3 on the outside maps, the result follows. □

Proposition 2.2.22. If 𝑋 is cofibrant, then 𝑖0, 𝑖1 : 𝑋 → Cyl(𝑋) are cofibrations.

Proof. Since cofibrations are preserved under pushouts, we have that 𝑖0 and 𝑖1 are cofibrations:

∅ 𝑋

𝑋 𝑋 ⨿ 𝑋

𝑖0

𝑖1

⌜

□

Theorem 2.2.23. (Exercise) If 𝑋 is cofibrant, then homotopy ≃ gives an equivalence relation on Hom(𝑋,𝑌 )
for any 𝑌 .
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We can think of a map

HomM (𝑋,𝑌 )/≃ ×HomM (𝑌, 𝑍)/≃ → HomM (𝑋, 𝑍)/≃
( 𝑓 , 𝑔) ↦→ 𝑔 ◦ 𝑓 .

In order for this to be well-defined, we need 𝑍 to be fibrant.

Lemma 2.2.24. If 𝑍 is fibrant, and 𝑓 ≃ 𝑔 : 𝑋 → 𝑍, then if ℎ : 𝑋 ′ → 𝑋, we have that 𝑓 ℎ ≃ 𝑔ℎ.

Proof. We have 𝐻 : Cyl(𝑋) → 𝑌 with 𝐻0 = 𝑓 and 𝐻1 = 𝑔. By lifting, we get

𝑋 ′ ⨿ 𝑋 ′ 𝑋 ⨿ 𝑋 Cyl(𝑋)

Cyl(𝑋 ′) 𝑋 ′ 𝑋.

∼

This gives the desired map. We used fibrancy of 𝑍 to ensure that the map Cyl(𝑋) → 𝑋 was a trivial fibration
(or could be replaced with a better cylinder object using a map to 𝑍). □

Theorem 2.2.25. In M, given 𝑓 : 𝑋 → 𝑌 with 𝑋 cofibrant and 𝑌 fibrant, then 𝑓 ∈ 𝑊 if and only if 𝑓 is a
homotopy equivalence.4

Notation 2.2.26. M𝑐 = cofibrant objects in M, and M 𝑓 = fibrant objects in M. We denote by M𝑐 𝑓 =

objects which are both cofibrant and fibrant.

Concretely, we can define Ho(M) as the objects in M, but where

HomHo(M) (𝑋,𝑌 ) = HomM𝑐 𝑓 /≃ (𝑅𝑄𝑋, 𝑅𝑄𝑌 ),

where 𝑅 is a fibrant replacement and 𝑄 is a cofibrant replacement.

Exercise 2.2.27. Given 𝑋 → 𝑌 in M, there exists 𝑄𝑋
𝑓̃
−→ 𝑄𝑌 such that

𝑄𝑋 𝑄𝑌

𝑋 𝑌.

∼

𝑓̃

∼

𝑓

Here 𝑓̃ is well-defined up to left homotopy.

Given some M→ Ho(M), we just need to check that 𝑊 ↦→ isos, and it is universal in that way.

2.3 Derived functors

Definition 2.3.1. Suppose M and N are model categories, and take a functor 𝐹 : M → N. A left derived
functor of 𝐹 is an (absolute) right Kan extension of 𝐹 along 𝛾M : M→ Ho(M):

M N

Ho(M)

𝐹

𝛾M
ℓ

4Meaning that there is some 𝑔 : 𝑌 → 𝑋 with 𝑓 𝑔 ≃ id and 𝑔 𝑓 ≃ id.
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if 𝐺 : Ho(M) → N and 𝑠 : 𝐺 ◦ 𝛾M ⇒ 𝐹, then there exists a unique 𝑠′ : 𝐺 ⇒ 𝐿𝐹 so that ℓ ◦ (𝑠′ ◦ 𝛾M) = 𝑠.

M N

Ho(M)

𝐹

𝛾M

ℓ

𝑠′

Definition 2.3.2. Let 𝐹 : M → N. A total left derived functor L𝐹 : Ho(M) → Ho(N) is the left derived

functor of M
𝐹−→ N

𝛾N−−→ Ho(N).

Example 2.3.3. If F : M→ N where if 𝑓 ∈ 𝑊 between cofibrant objects then 𝐹 𝑓 is a weak equivalence in
N, then L𝐹 exists:

M N Ho(N)

Ho(M)

𝐹

We will have that L𝐹 (𝑋) ∼−→ 𝐹 (𝑋) whenever 𝑋 is cofibrant. In general, L𝐹 (𝑋) = 𝐹 (𝑄(𝑋)).

Definition 2.3.4. Let 𝐹 : M→ N. We say that 𝐹 is a left Quillen functor if

(i) 𝐹 is a left adjoint

(ii) 𝐹 preserves cofibrations and trivial cofibrations.

In this case if 𝐺 is a right adjoint, then we say the adjunction is a Quillen adjunction / Quillen pair.5

Exercise 2.3.5. Show that 𝐿 is left Quillen if and only if 𝐺 is right Quillen.

Lemma 2.3.6. (Ken Brown’s Lemma) If 𝐹 : M→ N is any functor between model categories which sends
trivial cofibrations between cofibrant objects to weak equivalences in N, then 𝐹 sends any weak equivalence
between cofibrant objects to weak equivalences.

Proof. Let 𝑓 : 𝐴
∼−→ 𝐵, where 𝐴, 𝐵 ∈ M𝑐. We need 𝐹 ( 𝑓 ) to be a weak equivalence. Consider the factorization

of the coproduct of 𝑓 and the identity on 𝐵:

𝐴 ⨿ 𝐵 𝐵

𝐶

𝑓⨿id𝐵

𝑞

∼
𝑝

Then consider the pushout:

∅ 𝐴 𝐵

𝐵 𝐴 ⨿ 𝐵

𝐶

𝐵

𝑖𝐴

𝑓

∼

𝑞 𝑞

𝑝

𝑝

5There is a dual notion of right Quillen functor, meaning it is a right adjoint which preserves fibrations and trivial fibrations.
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We have that

𝐵
𝑖𝐵
↩→ 𝐴 ⨿ 𝐵

𝑞
↩→ 𝐶

𝐴
𝑖𝐴
↩→ 𝐴 ⨿ 𝐵

𝑞
↩→ 𝐶

are both trivial cofibrations, hence their images under 𝐹 are weak equivalences. We see that

𝐹 (𝑝) ◦ 𝐹 (𝑞 ◦ id𝐵) = 𝐹 (𝑝 ◦ 𝑞 ◦ id𝐵) = 𝐹 (id𝐵).

Therefore 𝐹 (𝑝) is a weak equivalence by 2-out-of-3. □

Theorem 2.3.7. Suppose that 𝐹 : M → M is left Quillen. Then L𝐹 : Ho(M) → Ho(N) exists and can be
defined as

Ho(M) 𝑄−→ Ho(M𝑐)
𝐹−→ Ho(N).

Moreover, we obtain an adjunction on the homotopy categories:

L𝐹 : Ho(M) ⇄ Ho(N) : R𝐺.

Proof idea. We have a natural iso

HomM (𝑋, 𝐺 (𝑌 )) � HomN (𝐹 (𝑋), 𝑌 ),

compatible with homotopy equivalence:

HomM (𝑋, 𝐺 (𝑌 ))/≃� HomN (𝐹 (𝑋), 𝑌 )/≃

□

Theorem/Definition: Take a Quillen adjunction 𝐹 : M ⇄ N : 𝐺. Suppose that 𝑓 : 𝑋
∼−→ 𝐺 (𝑌 ), with

𝑋 ∈ M𝑐 and 𝑌 ∈ N 𝑓 is a weak equivalence if and only if 𝑓 ♭ : 𝐹 (𝑋) → 𝑌 is. Then L𝐹 and R𝐺 are equivalences
of categories, we call this a Quillen equivalence.

Example 2.3.8. We have that

| − | : sSetKan ⇄ TopQuillen : Sing(−)

is a Quillen equivalence.

Example 2.3.9. We have that

id : TopQuillen ⇄ TopStrøm : id

is a Quillen adjunction but not a Quillen equivalence.

Q: If M and N are model categories such that there is an equivalence of categories Ho(M) � Ho(N), is
this always coming from a Quillen equivalence?

A: No! Dugger–Shipley, 2009.

This indicates that Quillen equivalence is a good notion but it is not a perfect notion.
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2.4 Guided example: chain complexes

Let’s take ChZ to be homologically graded unbounded chain complexes. There are three model structures
of interest. We first start with the projective one:
(ChZ)projective:
• weak equivalences are quasi-isomorphisms

• fibrations are levelwise epimorphisms

• cofibrations are levelwise monomorphisms such that the cokernel of each 𝑓𝑛 : 𝑋𝑛 → 𝑌𝑛 is free.

If 𝑀 ∈ Ab, we define 𝑆𝑛 (𝑀) to be the chain complex 𝑀 [𝑛] which is concentrated in 𝑀 at degree 𝑛. If
𝑀 = Z, we call it 𝑆𝑛. We define 𝐷𝑛 (𝑀) to be a chain complex

· · · → 0→ 𝑀
id−→ 𝑀 → 0→ · · ·

with two 𝑀’s concentrated in degrees 𝑛 and 𝑛 − 1. We call 𝐷𝑛 (Z) =: 𝐷𝑛.
Exercise 2.4.1. Show that fibrations are RLP(0→ 𝐷𝑛) for all 𝑛. That is,

0 𝑋

𝐷𝑛 𝑌 .

We claim this lifts iff 𝑋 → 𝑌 is a levelwise epimorphism. We have that HomCh (𝐷𝑛, 𝑌 ) � 𝑌𝑛, so we are just
asking if every element in 𝑌𝑛 lifts to an element in 𝑋𝑛.

Exercise 2.4.2. Show that F̃ib = RLP
(
𝑆𝑛 ↩−→ 𝐷𝑛+1

)
for all 𝑛. Consider HomCh (𝑆𝑛, 𝑌 ). A map looks like

· · · Z 0 · · ·

· · · 𝑌𝑛 𝑌𝑛−1 · · ·

That is, it picks out a class in 𝑌𝑛 which maps to zero under the differential. The data of a square

𝑆𝑛−1 𝑋

𝐷𝑛 𝑌

𝑝

is the data of (𝑦, 𝑥) ∈ 𝑌𝑛 ⊕ 𝑍𝑛−1𝑋 so that 𝑝(𝑥) = 𝑑𝑦. Show that a lift exists if and only if 𝑝 is a trivial
fibration.
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Other model structures.
(Ch𝑅)injective:

• 𝑊 = quasi-isomorphisms

• Cof = fiberwise monomorphisms6

• Fib = fiberwise epimorphisms with fibrant kernel

We get a Quillen equivalence

id : (Ch𝑅)projective ⇄ (Ch𝑅)injective : id.

We also have have a third one which is not Quillen equivalent.
(Ch𝑅)Hurewicz:

• 𝑊 = homotopy equivalences of chain complexes

• Cof = split levelwise monomorphisms

• Fib = split levelwise epimorphisms

We denote by D(𝑅) = Ho
(
(Ch𝑅)proj

)
the derived category of a ring 𝑅.

We can also think about connective chain complexes (which are zero in negative degrees). We have an
adjunction

Ch𝑅 ⇄ Ch>0𝑅 .

This induces a model structure on Ch>0𝑅 making it into a Quillen adjunction but not a Quillen equivalence.
We denote by Ho(Ch≥0

𝑅
) = D≥0 (𝑅).

We get a model structure:
(
Ch>0𝑅

)
proj

• 𝑊 = quasi-isomorphisms

• Fib = positive epimorphisms (may not be epi in degree 0)

• Cof = monomorphisms with projective cokernel. The cofibrant objects here are levelwise projective
𝑅-modules.

If we take 𝑀 ∈ Mod𝑅, we can view 𝑆0 (𝑀) ∈ Ch≥0
𝑅
, and take a cofibrant replacement of it 𝑃

∼
↠ 𝑆0 (𝑀).

This is exactly a projective resolution of 𝑀!

· · · 𝑃2 𝑃1 𝑃0 0

· · · 0 0 𝑀 0.

Example 2.4.3. Let 𝑀 ∈ Mod𝑅. Then we can take

𝑆0 (𝑀) ⊗𝑅 − : Ch≥0
𝑅
→ Ch≥0

𝑅
.

We can check that this is left Quillen. We can look at its total left derived functor 𝑆0 (𝑀) ⊗L
𝑅
−. We can see

that

𝑀 ⊗L𝑅 𝑁 := 𝑆0 (𝑀) ⊗L𝑅 𝑆
0 (𝑁) ≃ 𝑆0 (𝑀) ⊗𝑅 𝑃•,

where 𝑃• is a projective resolution of 𝑁. We have that

𝐻𝑖 (𝑀 ⊗L𝑅 𝑁) = Tor𝑅𝑖 (𝑀, 𝑁).
6Here we roughly have that Cof = LLP(𝐷𝑛 → 0) and F̃ib = LLP(𝐷𝑛+1 → 𝑆𝑛 ).
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Exercise 2.4.4. In the same way, if we want to derive hom, we can check that

HomD≥0 (𝑅) (𝑆𝑚 (𝑀), 𝑆𝑛 (𝑁)) � Ext𝑛−𝑚𝑅 (𝑀, 𝑁).

Via Dold-Kan, we have a Quillen adjunction

𝑅[−] : sSetKan ⇄ sMod𝑅 : 𝑈,

with the model structure on sMod𝑅 given by weak homotopy equivalences as underlying simplicial sets, and
fibrations as underlying Kan fibrations.

Then Dold-Kan takes the form of a Quillen equivalence

𝑁 : (sMod𝑅)Kan ⇄ (Ch≥0𝑅 )proj : Γ.

In general 𝑁 (𝑋 ⊗𝑅 𝑌 ) � 𝑁 (𝑋) ⊗𝑅 𝑁 (𝑌 ), however 𝑁 (𝑋 ⊗ 𝑌 ) � 𝑁 (𝑋) ⊗𝑅 𝑁 (𝑌 ). They both describe D≥0 (𝑅)
in a monoidal way.

For Dold–Kan Ch≥0 � sMod𝑅, we have

𝑀 ⊗ 𝑁 ⇄ 𝑀 ⊗ 𝑅 ⊗ 𝑁 ⇄ 𝑀 ⊗ 𝑅⊗2𝑁 · · ·

we denote this by 𝐵• (𝑀, 𝑅, 𝑁) and call it the bar construction.

2.5 Homotopy (co)limits

Motivation: Limits and colimits are not invariant under (weak) homotopy equivalence.

𝑋 𝐶𝑋

𝐶𝑋 Σ𝑋
⌜

𝑋 ∗

∗ ∗⌜

However Σ𝑋 ; ∗.
Let M be a model category, and C a small category. Then we denote by Fun(C,M) = MC. Let C0 ⊆ C be

the discrete subcategory spanned by Ob(C). Let MC0 =
∏

C0
M. This has a model structure where 𝑊 , Fib,

and Cof are determined objectwise.

Consider 𝜄 : C0 ↩−→ C. This induces a map

𝜄∗ : MC →MC0

𝐹 ↦→ 𝐹 |C0
.

This admits adjoints:

𝜄! ⊣ 𝑖∗ ⊣ 𝑖∗.

We have that 𝜄∗ creates 𝑊 and Fib.

We have
(
MC

)
proj:

• 𝑊 = objectwise weak equivalence

• Fib = objectwise fib

• Cof = ? induced by 𝜄!Cof
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We have that M is cocomplete, so we get a tensoring

M × SetC →MC

(𝑋, 𝐹) ↦→ 𝑋 ⊗ 𝐹 = ⨿𝐹 (−)𝑋.

We have (𝑋 × 𝐹) (𝑐) = ⨿𝐹 (𝑐)𝑋.
There are representable functors

C(𝑐,−) : C→ Set

𝑑 ↦→ C(𝑐, 𝑑).

By Yoneda, there is a natural iso

SetC (C(𝑐,−), 𝐹) � 𝐹 (𝑐).

Tensoring with a representable functor gives

𝑋 ⊗ C(𝑐,−) = ⨿C(𝑐,−)𝑋.

This is the free diagram of 𝑋 generated at 𝑐.
This gives an adjunction

− ⊗ C(𝑐,−) : M⇄MC : ev𝑐 .

In this case

𝜄! (𝐹) = ⨿𝑐 ⨿C(𝑐,−) 𝐹 (𝑐),

which is the free diagram in M generated by 𝐹. Evaluating at 𝑑 gives

𝜄! (𝐹) (𝑑) = ⨿𝑐∈C ⨿C(𝑐,𝑑) 𝐹 (𝑐).

This is the functor 𝜄! : M
C0 →MC. We see that 𝜄!𝑋 is a left Kan extension

C0 M

C

𝜄

𝑋

There is a diagonal functor

M
Δ−→MC

𝐶 ↦→ constant functor at 𝑋.

This admits adjoints

colim ⊣ Δ ⊣ lim .

Proposition 2.5.1. The adjunction

colim :
(
MC

)
proj
⇄M : Δ

is Quillen.
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We denote hocolim := L colim. There is a map hocolim(−) → colim(−), and

hocolim(𝐹) ≃ colim(𝑄𝐹).

Here 𝑄𝐹 denotes a cofibrant replacement in
(
MC

)
proj. For a general C, 𝑄𝐹 is very difficult to determine.

Consider C = 𝑎 ← 𝑏 → 𝑐, and let 𝑋 ∈ MC0 . Then 𝜄!𝑋 is equal to

𝑋 (𝑏) 𝑋 (𝑏) ⨿ 𝑋 (𝑐)

𝑋 (𝑎) ⨿ 𝑋 (𝑏)

Cofibrant objects in MC are of the form

𝑋 𝑍

𝑌

with 𝑋 cofibrant. Here cofibrant replacement is easy. We start with 𝑌
𝑓
← 𝑋

𝑔
−→ 𝑍, and we replace 𝑋 with

𝑋
∼−→ 𝑋 to get

𝑋 𝑌

𝑍

If we cofibrantly replace 𝑋 → 𝑍, and similarly for 𝑌 , we get

𝑋 𝑍

𝑌

The maps we used to fibrantly replace induces a fiberwise weak equivalence between this diagram and the
one we started out with.

In (Top)Quillen, we can take hocolim(∗ ← 𝑋 → ∗). We cofibrantly replace 𝑋 if necessary, and replace
𝑋 → ∗ by 𝑋 ↩−→ 𝐶𝑋, which is a cofibration. In this case we see that

hocolim (∗ ← 𝑋 → ∗) ≃ colim(𝐶𝑋 ← 𝑋 → 𝐶𝑋) = Σ𝑋.

More generally, hocolim(𝑌
𝑓
← 𝑋

𝑔
−→ 𝑍) is the double mapping cylinder 𝑀 ( 𝑓 , 𝑔).

Theorem 2.5.2. If M is a left proper model category then

hocolim(𝑌 ←−↪ 𝑋 → 𝑍) � colim(𝑌 ←−↪ 𝑋 → 𝑍).

Proof. In the easy case, 𝑋 is cofibrant, so we can factor the map to 𝑍 to get

𝑋 𝑍 𝑍

𝑌 𝐻 𝑃.

∼

⌜

The entire rectangle is a pushout, so 𝑍 → 𝑃 is a cofibration, and the right square is a pushout by the pasting
law, so 𝐻 → 𝑃 is a weak equivalence. □
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Example 2.5.3. Let C = ∗ → ∗ → · · · . Show that 𝑋0 → 𝑋1 → · · · is cofibrant in MC if and only if 𝑋0 is
cofibrant and 𝑋𝑖 ↩−→ 𝑋𝑖+1 is a cofibration for each 𝑖.

There is a third model structure on MC called the Reedy model structure (need C to be a Reedy cat). In
this case, hocolimΔop (𝑋•) �

��𝑄Reedy𝑋•
��, for 𝑋 a simplicial object in M.

Bar construction: Let M a model cat, C a small cat, 𝐹 : Cop →M, and 𝐺 : C→M. Then we define

𝐵• (𝐹,C, 𝐺) := ⨿𝑐0∈C𝐹 (𝑐0) × 𝐺 (𝑐0) ⇔ ⨿𝑐0←𝑐1𝐹 (𝑐0) × 𝐺 (𝑐1) ⇔ · · ·

Example 2.5.4. If 𝐹 = ∗ = 𝐺, then

𝐵• (∗,C, ∗) � 𝑁• (Cop).

Pièce de résistance:

Theorem 2.5.5. (Bousfield–Kan) If 𝐹 : C→M is a functor, then

hocolimC (𝐹) ≃ |𝐵• (∗,C, 𝐹) | .

2.6 Combinatorial model categories

Show how model categories are enriched in spaces up to homotopy types and have cellular approximations

Definition 2.6.1. A model category is combinatorial if it is presentable7 and cofibrantly generated.

To motivate presentability, let 𝑋 be a set. Then 𝑋 is determined by its elements, meaning that

HomSet (∗, 𝑋) � 𝑋.

Then we can present 𝑋 as 𝑋 = ∪𝑥∈𝑋 {∗}.

Definition 2.6.2. A colimit is filtered if the diagram is filtered, meaning it is nonempty and every subdia-
gram has a cocone.

Theorem 2.6.3. (Exercise) In Set, filtered colimits commute with finite limits. That is, if 𝐹 : 𝐼 × 𝐽 → Set
with 𝐼 finite and 𝐽 filtered, then

colim𝐽

(
lim
𝐼
𝐹𝐼

) ∼−→ lim
𝐼
(colim𝐽 𝐹𝐽 )

is an isomorphism.

Proposition 2.6.4. A set 𝑋 is finite if and only if

HomSet (𝑋,−) : Set→ Set

preserves filtered colimits.

Proof. For the backwards direction, let 𝐼 = {𝑋𝑖} be the collection of finite subsets of 𝑋. Then 𝑋 = colim𝐼 𝑋𝑖.
In particular, we have that

colim𝐼 Hom(𝑋, 𝑋𝑖) � Hom(𝑋, 𝑋)

(𝑋
𝑓𝑖−→ 𝑋𝑖)

∼−→ id𝑋?

For the forwards direction, HomSet (∗,−) � idSet so it preserves colimits. Since 𝑋 is finite, we have that
𝑋 = {𝑥1, . . . , 𝑥𝑛}, hence

Hom(𝑋,−) � Hom(∪𝑖 {𝑥𝑖} ,−) � lim
𝑖
Hom ({𝑥𝑖} ,−) .

Then we use finite limits commuting with filtered colimits. □
7By this we mean “locally presentable.”

45



Definition 2.6.5. An object 𝑋 ∈ C is compact if HomC (𝑋,−) : C→ Set preserves filtered colimits.

Hence if 𝐹 : 𝐼 → C, with 𝐼 filtered, then a map 𝑋 → colim𝐼 𝐹 factors through an 𝐹 (𝑖).

Examples 2.6.6. Compact objects:

• Set, compact = finite set

• Vect𝐹 , compact = finite dimensional

• Mod𝑅, compact = finitely presented

• Grp, compact = finitely presented

• Top, compact = finite sets with discrete topology

• Ch, compact = perfect chain complexes (bounded, levelwise finitely generated and projective)

• sSet, compact = finite simplicial sets (𝑋𝑛 finite for each 𝑛, and there exists an 𝑚 so that all non-
degenerate simplices have dimension ≤ 𝑚).

A topological space is (topologically) compact if and only if 𝑋 ∈ O(𝑋) is (categorically) compact.

Lemma 2.6.7. Finite colimits of compact objects are compact.

Definition 2.6.8. A category C is presentable if

1. C is cocomplete

2. There exists a set 𝑆 of compact objects in C such that every object in C is a filtered colimit of objects
in 𝑆.

We also say the “ind-completion” of 𝑆 is C, denoted Ind(𝑆) = C.

Theorem 2.6.9. C is presentable if and only if there is an adjunction of the form

Fun(𝐾op, Set) ⇄ C,

where 𝐾 is some small category, and the right adjoint is fully faithful and preserves filtered colimits.

We might take 𝐾 for example to to be isomorphism classes of compact objects in C, then we have

C→ Fun(𝐾op, Set)

𝑋 ↦→
(
𝐾op → Cop

Hom(−,𝑋)
−−−−−−−−−→ Set

)
.

Theorem 2.6.10. Suppose C and D presentable. Then 𝐿 : C → D preserves colimits if and only if 𝐿 is a
left adjoint.
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Definition 2.6.11. Let 𝐼 be a set of maps in a cocomplete category, fix 𝜆 to be an ordinal, and let 𝑋 : 𝜆→ C

a functor, and suppose that 𝑋 (𝛼) → 𝑋 (𝛼 + 1) fits into

𝐴𝛼 𝑋 (𝛼)

𝐵𝛼 𝑋 (𝛼 + 1),

where 𝐴𝛼 → 𝐵𝛼 is in 𝐼. Then we say that 𝑋 (0) → colim𝜆 𝑋 is a relative 𝐼-cell complex. We say an object
𝑌 ∈ C is an 𝐼-cell complex if ∅ → 𝑌 is a relative 𝐼-cell complex.

If 𝐼 =
{
𝑆𝑛 ↩−→ 𝐷𝑛+1

}
𝑛≥0, then we are recovering the idea of CW complexes in spaces.

We denote by Cell𝐼 (C) the class of relative 𝐼-cell complexes.

Exercise 2.6.12. We have that Cell𝐼 (C) is the smallest class in C closed under composition, pushouts, and
filtered colimits.

Theorem 2.6.13. (Small object argument) Let C be cocomplete, let 𝐼 a set of maps in C, and suppose that
for all 𝐴 → 𝐵 in 𝐼, we have that 𝐴 is compact with respect to the full subcategory of of 𝐼-cells in C. Then
there exists a functorial factorization of maps in C:

𝑋 𝑌

𝐶

𝑓

𝛾 𝛿

with 𝛾 ∈ Cell𝐼 (C) and 𝛿 ∈ RLP(𝐼).

Proof idea. Start with 𝑋 (0) = 𝑋, and take a map 𝑋 (0) → 𝑌 . Suppose 𝑋 (𝛽) = colim𝛼<𝛽 𝑋 (𝛼) is constructed
with 𝑋 (𝛽) → 𝑌 . Look at the set8

𝑆 =


𝐴 𝑋 (𝛽)

𝐵 𝑌

𝑔 : 𝑔 ∈ 𝐼


.

8Note this set is nonempty because we can take 𝑔 to be id : 𝑋 (𝛽) → 𝑋 (𝛽).
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Denote by 𝑔𝑠 the map 𝐴→ 𝐵 appearing in 𝑠 ∈ 𝑆. Then we build

⨿𝑠∈𝑆𝐴𝑠 𝑋 (𝛽)

⨿𝑠∈𝑆𝐵𝑠 𝑋 (𝛽 + 1)

⨿𝑠𝑔𝑠 ∈Cell𝐼 (C)
⌜

By UP of the pushout, there is an induced map 𝑋 (𝛽 + 1) → 𝑌 . Then we claim that

𝑋 (0) → colim𝛽 𝑋 (𝛽) =: 𝐶

is in Cell𝐼 (C). The only thing left to show is that 𝐶 → 𝑌 is in RLP(𝐼). Take

𝐴 𝐶 = colim𝛽 𝑋 (𝛽)

𝐵 𝑌.

Since 𝐴 is compact with respect to 𝐼-cells, the map 𝐴→ 𝐶 factors through some 𝑋 (𝛽). Since 𝐵→ 𝑌 factors
through 𝑋 (𝛽 + 1), we see that it lifts to 𝐵→ 𝐶. □

Definition 2.6.14. A model category M is cofibrantly generated if there exist sets of maps 𝐼, 𝐽 in M so that

• Cof = retracts of 𝐼-cell complexes, denoted �Cell𝐼 (C)9
• Cof = �Cell𝐽 (C)

and “𝐼 and 𝐽 permit the small object argument.”

Example 2.6.15. For TopQuillen, we can take

𝐼 =
{
𝑆𝑛 ↩−→ 𝐷𝑛+1

}
𝐽 = {𝐷𝑛 → 𝐷𝑛 × [0, 1]} .

Example 2.6.16. For sSetKan, we can take

𝐼 = {𝜕Δ𝑛 → Δ𝑛}
𝐽 =

{
Λ𝑘𝑛 → Δ𝑛

}
.

Example 2.6.17. For (Ch𝑅)proj,

𝐼 =
{
𝑆𝑛 → 𝐷𝑛+1

}
𝐽 = {0→ 𝐷𝑛} .

Example 2.6.18. The Strøm model structure is not cofibrantly generated in the definition above.

Theorem 2.6.19. (Kan — Right transfer) Let M be a cofibrantly generated model category and C is any
category where there is an adjunction

𝐹 : M⇄ C : 𝐺.

Then C has a model structure where 𝑊 and Fib are created by 𝐺. The model structure is cofibrantly
generated by 𝐹 (𝐼) and 𝐹 (𝐽) if:

1. 𝐹 (𝐼) and 𝐹 (𝐽) permit the small object argument

9The hat −̂ means “retracts of -”
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2. 𝐺
(
Cell𝐹 (𝐽 )

)
are weak equivalences in M.

For combinatorial model categories, we get an inductive argument for building cofibrant replacements.
[Rezk-Schwede-Shipley] Combinatorial model categories are always simplicially enriched.
[Dugger] Any combinatorial model category M is Quillen equivalent to a localization of a projective Kan

one:

𝐿𝜏Fun(𝐾op, sSet) ⇄M.

2.7 Multiplicative structures on homotopy theories

The goal is to give a monoidal structure on the homotopy category Ho(M) of a model category M, then we
can consider rings and modules up to homotopy.

Definition 2.7.1. We say a symmetric monoidal category (C, ⊗, I) is presentably symmetric monoidal if:

• the category C is presentable;

• the bifunctor − ⊗ − : C × C→ C preserves colimits in each variable.

One consequence of being a presentably symmetric monoidal, is that the induced functor 𝑋 ⊗ − : C→ C

has a right adjoint, often denoted [𝑋,−] : C→ C, i.e. the monoidal structure is closed.

Definition 2.7.2. We say a category M is a (symmetric) monoidal model category if we have the following.

1. The category M is endowed with a model structure.

2. It is presentably symmetric monoidal (M, ⊗, I). 10

3. It respects the pushout-product axiom, which says that the bifunctor − ⊗ − : M ×M→M is a Quillen
bifunctor, i.e. given cofibrations 𝑓 : 𝑋 ↩→ 𝑌 and 𝑓 ′ : 𝑋 ′ ↩→ 𝑌 ′ in M, the induced dashed map 𝑓□ 𝑓 ′ on
the pushout in M

𝑋 ⊗ 𝑋 ′ 𝑋 ⊗ 𝑌 ′

𝑌 ⊗ 𝑋 ′ 𝑃

𝑌 ⊗ 𝑌 ′

𝑓 ⊗id

id⊗ 𝑓 ′

𝑓 ⊗id

id⊗ 𝑓 ′

⌜

𝑓□ 𝑓 ′

is a cofibration in M. Moreover, 𝑓□ 𝑓 ′ is a trivial cofibration as soon as 𝑓 or 𝑓 ′ is.

4. The monoidal unit I is cofibrant.11

Examples 2.7.3. (sSetKan,×, ∗), ((Ch𝑅)proj, ⊗𝑅, 𝑅) and (sMod𝑅, ⊗𝑅, 𝑅) are symmetric monoidal model
categories.

Examples 2.7.4. (TopQuillen,×, ∗) and ((Ch𝑅)inj, ⊗𝑅, 𝑅) are not monoidal model categories.

Exercise 2.7.5. Check that it is enough to verify the pushout-product axiom on the generating cofibrations
and trivial cofibrations, if M is a cofibrantly generated model category.

10We may relax this condition and just ask the monoidal category to be closed.
11We may relax this condition and just ask that for some (hence any) cofibrant replacement 𝑄I → I we get that 𝑄I ⊗ 𝑋 →
I ⊗ 𝑋 � 𝑋 is a weak equivalence for any cofibrant object 𝑋.
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Observe that one of the consequence of being a monoidal model category is that, for any cofibrant object
𝑋 ∈ M, the induced functor 𝑋 ⊗ − : M → M is a left Quillen functor (and thus [𝑋,−] : M → M is a right
Quillen functor). Indeed, given a cofibration 𝑓 ′ : 𝐴→ 𝐵, denote by 𝑓 : ∅ ↩→ 𝑋 the cofibration and apply the
pushout product to 𝑓□ 𝑓 ′ we obtain the diagram:

∅ ⊗ 𝐴 ∅ ⊗ 𝐵

𝑋 ⊗ 𝐴 𝑋 ⊗ 𝐴

𝑋 ⊗ 𝐵

∃!

∃!

∃!

id⊗ 𝑓 ′

⌜

id⊗ 𝑓 ′

Since we assume − ⊗ 𝑍 to be a left adjoint for any object 𝑍, it preserves initial object, so ∅ ⊗ 𝐴 � ∅ � ∅ ⊗ 𝐵.
Thus 𝑋 ⊗ − preserves cofibrations and trivial cofibrations. Therefore we can left derive the bifunctor given
by the monoidal product, and we denote it

− ⊗L − : Ho(M) ×Ho(M) −→ Ho(M).

One can in fact check that we obtain the following.

Theorem 2.7.6 (Hovey). Let (M, ⊗, I) be a (symmetric) monoidal model category. Then the derived
tensor product endows the homotopy category (Ho(M), ⊗, I) with a (symmetric) closed monoidal structure.
Moreover, the localization functor M → Ho(M) is lax (symmetric) monoidal, and is strong monoidal if we
restrict on cofibrant objects.

Similarly, we can introduce a variation on Quillen functors so that they are compatible with the monoidal
structures.

Definition 2.7.7. A weak symmetric monoidal Quillen pair is a Quillen adjunction:

(M, ⊗, I) (N,∧, J)
𝐿

𝑅

⊥

between symmetric monoidal model categories, for which 𝐿 is oplax symmetric monoidal (or equivalently, 𝑅
is lax symmetric monoidal) such that:

1. for all cofibrant objects 𝑋 and 𝑌 in M, the natural oplax map 𝐿 (𝑋 ⊗ 𝑌 ) → 𝐿 (𝑋) ∧ 𝐿 (𝑌 ) is a weak
equivalence;

2. the natural map 𝐿 (I) → J is a weak equivalence.

These two conditions are immediately verified if 𝐿 is strong symmetric monoidal rather than just oplax
symmetric monoidal. If the Quillen adjunction is a Quillen equivalence, then we refer to it as a weak
symmetric monoidal Quillen equivalence.

Theorem 2.7.8 (Schwede-Shipley). Given a weak symmetric monoidal Quillen pair

(M, ⊗, I) (N,∧, J)⊥ ,

we obtain a weak symmetric monoidal adjunction on the homotopy categories:

(Ho(M), ⊗L, I) (Ho(N),∧L, J)⊥

It is an equivalence of symmetric monoidal categories if the original adjunction is a weak symmetric monoidal
Quillen equivalence.
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Example 2.7.9. (Schwede-Shipley) Regard the equivalence of categories Ch≥0
𝑅
� sMod𝑅 as a weak sym-

metric monoidal Quillen adjunction:

(Ch≥0
𝑅
)proj sMod𝑅

Γ

𝑁

⊥

where we give the normalization functor a lax symmetric monoidal structure 𝑁 (𝐴)⊗𝑁 (𝐵) → 𝑁 (𝐴⊗𝐵) via the
Eilenberg-Zilber map. This map is not an isomorphism, and so the equivalence Ch≥0

𝑅
� sMod𝑅 is not com-

patible with the monoidal structures. However, once derived, since the above is a weak symmetric monoidal
Quillen equivalence, we obtain that Ho(Ch≥0

𝑅
) � Ho(sMod𝑅) is an equivalence of symmetric monoidal cat-

egories. Indeed, we can show the Eilenberg-Zilber map has a homotopy inverse 𝑁 (𝐴 ⊗ 𝐵) → 𝑁 (𝐴) ⊗ 𝑁 (𝐵)
given by the Alexander-Whitney map.

Given a monoidal model category M, we can also lift model structures on modules and algebras in M.
For instance, we can use Kan’s right transfer to defined a right-induced model structure on the category
Alg(M) of algebra objects in M using the free-forgetful adjunction:

M Alg(M)

𝑇

𝑈

⊥

where 𝑇 (𝑋) =
⊕
𝑛≥0

𝑋⊗𝑛. For this, not only we need to assume cofibrantly generated, we also require the

following axiom.

Definition 2.7.10. We say a combinatorial symmetric monoidal model category M respect the monoid

axiom if we have the following. Given any object 𝑋 in M, denote by 𝑆𝑋 = {𝑋 ⊗ 𝐴
id⊗ 𝑓
→ 𝑋 ⊗ 𝐵 | 𝑓 ∈ 𝐽} where

𝐽 is the set of generating trivial cofibrations. Then any relative 𝑆𝑋-cell complex is a weak equivalence. If all
objects are cofibrant, the axiom is automatically verified.

By Kan’s right transfer, in order to obtain a model structure on Alg(M) we would need to check that
maps in 𝑈 (Cell𝑇 (𝐽 ) ) are weak equivalences in M. Thus we need first to understand transfinite composition
in Alg(M). As 𝑇 preserves filtered colimits, then 𝑈 preserves and reflects filtered colimits. So we need to
understand certain pushouts in Alg(M). These will be pushouts along free maps: given 𝑓 : 𝑋 → 𝑌 in M,
consider the pushout in Alg(M)

𝑇 (𝑋) 𝑇 (𝑌 )

𝐴 𝑃.

𝑇 ( 𝑓 )
⌜

We can give a very explicit construction of 𝑃: it is the telescope in M

𝑃0 = 𝐴 𝑃1 𝑃2 · · ·

that we describe below. Informally, one can think of 𝑃 as the formal product of elements in 𝐴 and in 𝑌
subject to the relations between letters induced by 𝑓 : 𝑋 → 𝑌 and the multiplication in 𝐴, while 𝑃𝑛 only
considers at most 𝑛 factors from elements in 𝑌 . Let us now give a more robust definition.

Let us denote by P({1, . . . , 𝑛}) the poset of power set of the set with 𝑛-elements. Define a functor
𝑊𝑛 : P({1, . . . , 𝑛}) →M as follows: on objects 𝑆 ⊆ {1, . . . , 𝑛}, let

𝑊𝑛 (𝑆) = 𝐴 ⊗ 𝐶1 ⊗ 𝐴 ⊗ 𝐶2 ⊗ · · · ⊗ 𝐶𝑛 ⊗ 𝐴

51



where

𝐶𝑖 =

{
𝑋 if 𝑖 ∉ 𝑆

𝑌 if 𝑖 ∈ 𝑆
The assignment on the maps is induced by the map 𝑓 : 𝑋 → 𝑌 . The functor 𝑊𝑛 defines an 𝑛-dimensional
cube diagram in M. For instance, at 𝑛 = 2, it looks like:

𝐴 ⊗ 𝑋 ⊗ 𝐴 ⊗ 𝑋 ⊗ 𝐴 𝐴 ⊗ 𝑋 ⊗ 𝐴 ⊗ 𝑌 ⊗ 𝐴

𝐴 ⊗ 𝑌 ⊗ 𝐴 ⊗ 𝑋 ⊗ 𝐴 𝐴 ⊗ 𝑌 ⊗ 𝐴 ⊗ 𝑌 ⊗ 𝐴

Denote by𝑊𝑛 the restriction of the functor𝑊 onto the full subcategory of P({1, . . . , 𝑛}) for which we removed
the terminal object. Again, for 𝑛 = 2, it looks like:

𝐴 ⊗ 𝑋 ⊗ 𝐴 ⊗ 𝑋 ⊗ 𝐴 𝐴 ⊗ 𝑋 ⊗ 𝐴 ⊗ 𝑌 ⊗ 𝐴

𝐴 ⊗ 𝑌 ⊗ 𝐴 ⊗ 𝑋 ⊗ 𝐴

Let 𝑄𝑛 = colim 𝑊𝑛 in M, and define 𝑃𝑛 inductively (recall 𝑃0 = 𝐴) as the pushout in M:

𝑄𝑛 (𝐴 ⊗ 𝑌 )⊗𝑛 ⊗ 𝐴

𝑃𝑛−1 𝑃𝑛
⌜

The top horizontal map is induced by the universal property of the colimit and the maps we have removed
from 𝑊𝑛 to obtain 𝑊𝑛. The left vertical map 𝑄𝑛 → 𝑃𝑛−1 is defined by repeatedly applying the map 𝑋 → 𝐴

whenever 𝐶𝑖 = 𝑋 in 𝑊𝑛 (𝑆), i.e. 𝑖 ∉ 𝑆, and then if 𝐴 ⊗ 𝐴 appears in the copy, use the multiplication on 𝐴.
We are now left to check 3 things:

1. 𝑃 is an algebra in M

2. the induced map 𝐴→ 𝑃 is an algebra homomorphism

3. 𝑃 is indeed the desired pushout in Alg(𝑀).
For (1): the unit of 𝐴 induces the unit of 𝑃:

I→ 𝐴 = 𝑃0 → 𝑃 = colim𝑛≥0 𝑃𝑛

The multiplication on 𝑃 is defined from maps 𝑃𝑛 ⊗ 𝑃𝑚 → 𝑃𝑛+𝑚 which can be defined from the pushout
definition of 𝑃𝑛 by simply concatening all the words together. It its then elementary to show that the
multiplication is indeed associative and unital. This also automatically shows (2). For (3), suppose there
was an algebra 𝐵 fitting into the diagram in Alg(M):

𝑇 (𝑋) 𝑇 (𝑌 )

𝐴 𝐵.

By adjunction, it also defines a diagram in M:

𝑋 𝑌

𝐴 𝐵.

Define the unique homomorphism 𝑃 → 𝐵 of algebras by applying the maps 𝑌 → 𝐵 and 𝐴 → 𝐵 whenever
appropriate, this uniquely defines it. We are now ready to show the following.
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Theorem 2.7.11. (Schwede-Shipley) Suppose M is a combinatorial symmetric monoidal model category
that respects the monoid axiom, where the generating cofibrations and trivial cofibrations are denoted by
(𝐼, 𝐽) respectively. Then there exists a right-induced combinatorial model structure on Alg(M), i.e., fibrations
and weak equivalences are created in M via the forgetful functor in the adjunction

M Alg(N)

𝑇

𝑈

⊥

The generating cofibrations and trivial cofibrations are (𝑇 (𝐼), 𝑇 (𝐽)).

Proof. From Kan’s right transfer theorem, we need to check maps in 𝑈 (Cell𝑇 (𝐽 ) ) are weak equivalences. So

suppose in our construction of 𝑃 above that 𝑓 : 𝑋
∼
↩→ 𝑌 was a trivial cofibration. We need to show 𝐴 → 𝑃

is a weak equivalence. It is enough to show 𝑃𝑛−1 → 𝑃𝑛 is a weak equivalence for all 𝑛 ≥ 1. For this notice
that the map 𝑄𝑛 → (𝐴 ⊗ 𝑌 )⊗𝑛 ⊗ 𝐴 is isomorphic to 𝑄𝑛 ⊗ 𝐴⊗𝑛+1 → 𝑌⊗𝑛 ⊗ 𝐴⊗𝑛+1 using symmetry, where 𝑄𝑛
is obtained as 𝑄𝑛 but where we deleted all instances of 𝐴 appearing in the punctured cube 𝑊𝑛. Then using
the pushout-product axiom, we can check that the induced map 𝑄𝑛 → 𝑌⊗𝑛 is a trivial cofibration. Thus by
the monoid axiom, we get that 𝑃𝑛−1 → 𝑃𝑛 is a weak equivalence. □

Exercise 2.7.12. Show that if 𝐴 is cofibrant as an algebra in M, then 𝐴 is also cofibrant as an underlying
object in M.

A similar result can be deduced for modules, and it is easier as colimits of modules are computed in the
underlying category.

Exercise 2.7.13. Suppose M is a combinatorial symmetric monoidal model category that respects the
monoid axiom, where the generating cofibrations and trivial cofibrations are denoted by (𝐼, 𝐽) respectively.
Let 𝑅 be an algebra in M. Show that the category of right 𝑅-modules Mod𝑅 (M) is combinotorial model
category, with weak equivalences and fibrations determined in M, and the generating cofibrations and trivial
cofibrations are given by 𝐼 ⊗ 𝑅 and 𝐽 ⊗ 𝑅 respectively, using the free-forgetful adjunction

M Mod𝑅 (M)

−⊗𝑅

𝑈

⊥

Exercise 2.7.14. Show that if one additionally requires 𝑅 to be a commutative algebra, then the induced
model structures in Mod𝑅 (M) in previous exercise is in fact a symmetric monoidal model structure that also
satisfies the monoid axiom, with respect to the relative tensor product over 𝑅.

Exercise 2.7.15. Let 𝑓 : 𝑅 → 𝑆 be a homomorphism of algebras in combinatorial symmetric monoidal
model category M that respects the monoid axiom. Show there is a Quillen adjunction

Mod𝑅 (M) Mod𝑆 (M)
−⊗𝑆

𝑓 ∗

⊥

Show it is a Quillen equivalence, if and only if 𝑓 is a weak equivalence. Show it is (strong) monoidal Quillen
pair if 𝑅 and 𝑆 are commutative.

Remark 2.7.16. The case for commutative algebra is more subtle. It is sometimes possible to lift the model
structure as in the non-commutative case, but further restrictions on M is required. Notably, one can see
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that it is impossible to give a model structure right-induced on chains:

(Ch𝑅)proj CAlg(Ch𝑅)

𝑈

⊥

whenever char(𝑅) ≠ 0. Indeed, suppose char(𝑅) = 𝑝, and 𝐴→ 𝐵 is a homomorphism of commutative algebra,
that is a fibration in Ch𝑅. Suppose 𝑥 ∈ 𝐻𝑛 (𝐵), for 𝑛 even. Then 𝑥𝑝 is in the image of 𝐻∗ (𝐴) → 𝐻∗ (𝐵).
There exists 𝑦 ∈ 𝐴 that is mapped to 𝑥 but 𝑑𝑦𝑝 = 𝑝𝑦𝑝−1 = 0 by Leibniz rule. Therefore it is impossible to
factor a homomorphism of commutative algebra by a weak equivalence followed by a fibration.

2.8 Application: homotopy coherent multiplication on spaces

Last time: We had M a model category, and ⊗ a monoidal structure. We used this to give a monoidal
structure on Ho(M), given by ⊗L, the left derived tensor product. We used this to give a homotopy theory
on Alg(M), and Mod𝑅 (M), etc.

Q: What are algebras in the homotopy category of a model structure M? An example of interest is
M = Top.

What are commutative algebras in Top?

Theorem 2.8.1. (Moore) If 𝑋 ∈ CAlg(Top), then there is a weak equivalence

∞∏
𝑖=1

𝐾 (𝜋𝑖 (𝑋), 𝑖) → 𝑋.

Proof. Let 𝐺𝑛 = 𝜋𝑛 (𝑋). Then we take

0→ 𝐹 → Z[𝐺𝑛] → 𝐺𝑛 → 0.

Then we get that 𝐻𝑛 (∨𝑔∈𝐺𝑛
𝑆𝑛) � ⊕𝑔∈𝐺𝑛

𝐻𝑛 (𝑆𝑛) = Z[𝐺𝑛]. Using the Hurewicz theorem, there is an isomor-
phism

𝜋𝑛 (∨𝑆𝑛)
∼−→ 𝐻𝑛 (∨𝑆𝑛),
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so we can pick 𝑓 𝑗 ∈ 𝜋𝑛 (𝑆𝑛) for each 𝑒 𝑗 in a basis of 𝐹. This gives us a pushout

∨ 𝑗∈𝐽𝑆𝑛 ∨𝑔∈𝐺𝑛
𝑆𝑛

∗ 𝑀 (𝐺𝑛, 𝑛)
⌜

This gives a map ∨𝑛≥1𝑀 (𝐺𝑛, 𝑛) → 𝑋. By universal property, we get an algebra homomorphism1213

SP(∨𝑛≥1𝑀 (𝐺𝑛, 𝑛)) → 𝑋

The Dold–Thom theorem states that 𝜋∗SP(𝑌 ) � 𝐻∗ (𝑌 ), given some connectedness hypothesis (path-connected?).
We get that

SP(∨𝑛≥1𝑀 (𝐺𝑛, 𝑛)) �
∏
𝑛

SP(𝑀 (𝐺𝑛, 𝑛)) =
∏
𝑛

𝐾 (𝐺𝑛, 𝑛).

□

Definition 2.8.2. We say that 𝑋 ∈ Alg(Ho(Top)) if and only if 𝑋 is a CW complex, with multiplication
and unit

𝑋 × 𝑋 → 𝑋

∗ → 𝑋

which are associative and unital up to homotopy.

These are also called 𝐻-spaces. The most prototypical example is a loop space.

Example 2.8.3. If 𝑋 is a based space, we can build Ω𝑋 as the homotopy pullback of the two maps from a
point. Concatenation gives a map Ω𝑋 ×Ω𝑋 → Ω𝑋.

Example 2.8.4. Eilenberg-MacLane spaces 𝐾 (𝐺, 𝑛) are uniquely determined up to homotopy. We have
that

𝜋𝑘 (Ω𝐾 (𝐺, 𝑛)) � 𝜋𝑘+1 (𝐾 (𝐺, 𝑛))

therefore Ω𝐾 (𝐺, 𝑛) = 𝐾 (𝐺, 𝑛 − 1).
12Here SP(−) denotes the infinite symmetric product, i.e. the free commutative algebra in Top.
13The infinite symmetric product is left adjoint to the forgetful functor, i.e. SP : Top⇄ CAlg(Top) :𝑈.
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Q: Given 𝑋 an 𝐻-space, such that 𝜋0𝑋 is a group, is 𝑋 a loop space?
A: No, there are many grouplike 𝐻-spaces that are not equivalent to Ω𝑋. For example 𝑆7 ⊆ O the unit

octonians.
Loop spaces have an extra condition. Given 𝑤, 𝑥, 𝑦, 𝑧 ∈ Ω𝑋, there is an association (𝑥𝑦)𝑧 ≃ 𝑥(𝑦𝑧). There

is a pentagon witnessing the different ways to associate four elements.
We can keep going with 5 loops, 6 loops... and we get the Stasheff associahedra 𝐾 (𝑛), which tell us how

to concatenate 𝑛 loops. These give maps

𝐾 (𝑛) × (Ω𝑋)𝑛 → Ω𝑋,

witnessing the higher associativities of concatenation. We call this an 𝐴∞-algebra structure.

Theorem 2.8.5. (Stasheff) Given 𝑋 connected, we have that 𝑋 ≃ Ω𝑌 for some 𝑌 if and only if 𝑋 is an
𝐴∞-algebra in spaces that is grouplike.

Rigidification: We have that Ho(Alg(sSet,×)) ≃ Alg𝐴∞ (Ho(Top)).
Let C = (C, ⊗, 𝐼, [−,−]) be a closed monoidal category.

Definition 2.8.6. An operad in C is a collection of objects {O( 𝑗)} 𝑗≥0 in C such that

1. there is a right action of Σ 𝑗 on O( 𝑗)

2. O(0) = 𝐼

3. 𝐼 → O(1) exists in C

4. composition

O(𝑘) ⊗ O( 𝑗1) ⊗ · · · ⊗ O( 𝑗𝑘)
𝛾
−→ O( 𝑗1 + . . . + 𝑗𝑘)

for all 𝑘 ≥ 0 and 𝑗1, . . . , 𝑗𝑘 ≥ 0 such that they are equivariant, unital, and associative.

We think about O( 𝑗) as an abstract way to compose 𝑗-ary operations.

Example 2.8.7. We let Assoc be the operad defined by

Assoc( 𝑗) =
∐
𝜎∈Σ 𝑗

𝐼 .

We can define Comm( 𝑗) = 𝐼.

Example 2.8.8. If 𝑋 ∈ C, the endomorphism operad is given by

End𝑋 ( 𝑗) = [𝑋⊗ 𝑗 , 𝑋] .

Definition 2.8.9. A morphism of operads O→ O′ is a sequence of maps 𝜓 𝑗 : O( 𝑗) → O′ ( 𝑗) for 𝑔 ≥ 0 that
are equivariant, associative, and unital.

Definition 2.8.10. Given O an operad in C, an O-algebra (𝑋, 𝜃) in C is 𝑋 ∈ C together with a morphism of
operads 𝜃 : O → End𝑋, sending O( 𝑗) → End𝑋 ( 𝑗). By adjointness, we think about this as O( 𝑗) ⊗ 𝑋⊗ 𝑗 → 𝑋

which are associative and unital.

This gives us a category of O-algebras, denoted AlgO (C).

Example 2.8.11. We have that

AlgAssoc(C) � Alg(C)
AlgComm (C) � CAlg(C).

We have that M is a monoidal model category if O is nice enough, i.e. we get an adjunction

M⇄ AlgO (M).
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Definition 2.8.12. A monad in C is an algebra in (Fun(C,C), ◦, idC). That is, 𝑀 ∈ Alg(Fun(C,C)) if we
have 𝑀 : C→ C together with 𝜇 : 𝑀 ◦ 𝑀 ⇒ 𝑀, and 𝜂 : idC ⇒ C that are associative and unital.

Example 2.8.13. Every adjunction 𝐿 : C⇄ D : 𝑅 defines a monad 𝑅𝐿.

Definition 2.8.14. An algebra (𝑋, 𝜃) over a monad (𝑀, 𝜇, 𝜂) in C is 𝑋 ∈ C together with maps 𝜃 : 𝑀 (𝑋) → 𝑋

such that they are associative and unital, meaning that the diagrams commute:

𝑋 𝑀 (𝑋)

𝑋

𝜂

𝜃

𝑀 (𝑀 (𝑋)) 𝑀 (𝑋)

𝑀 (𝑋) 𝑋.

𝜇𝑀𝑋

𝑀 (𝜃 ) 𝜃

𝜃

Definition 2.8.15. If 𝑀 is a monad, a morphism of 𝑀-algebras (𝑋, 𝜃) → (𝑋 ′, 𝜃′) is a map 𝑓 : 𝑋 → 𝑋 ′ in C

so that the diagram commutes

𝑀𝑋 𝑋

𝑀𝑋 ′ 𝑋 ′.

𝜃

𝑀 𝑓 𝑓

𝜃 ′

Example 2.8.16. Consider 𝑅 a commutative ring, and the adjunction

− ⊗Z 𝑅 : Ab⇄ Mod𝑅 : 𝑈.

This forms a monad 𝑀 := − ⊗Z 𝑅 : Ab→ Ab. Then Alg𝑀 (Ab) is equivalent to Mod𝑅.

This is not always true! When this happens we say the adjunction is monadic.
Given a monadic adjunction

C⇄ D = Alg𝑅𝐿 (C),

we get a ton of things for free:

• 𝑅 will preserve colimits if 𝑅𝐿 does

• get things like free monadic resolutions, bar constructions, etc.

[Some of these notes were typed from grad school, a bit outdated]
Given an operad O in a nice enough monoidal category C, we obtain a monadic adjunction:

C AlgO (C)⊥

The left adjoint provides the free O-algebra functor, which is given on an object 𝑋 ∈ C by the coequalizer in
C: ∐

𝑗≥0
O( 𝑗) ⊗ 𝑋⊗ 𝑗

∐
𝑗≥0

O( 𝑗) ⊗𝐼 [Σ 𝑗 ] 𝑋
⊗ 𝑗

First map is induced supposing we have a canonical map 𝐼 → 𝑋 in C, and the other map is induced by
composition 𝛾 on O( 𝑗) with 𝑗 − 1-copies of O(1) and 1-copy of O(0) and thus lands to O( 𝑗 − 1). [Make this
more precise]

This adjunction gives defines a monad O : C→ C. And this is always monadic (exercise). So O-algebras
in C are equivalent to O-algebra in C.

We define now an operad on the symmetric monoidal category (Top,×, ∗), where by spaces we mean
topological weak Hausdorff 𝑘-spaces.
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Definition 2.8.17. Let 𝐽𝑛 be the interior of the 𝑛-dimensional unit cube [0, 1]𝑛. A little 𝑛-cube is a
rectilinear map 𝑐 : 𝐽𝑛 ↩→ 𝐽𝑛. Algebraically, this means the map is of the form :

(𝑡1, . . . , 𝑡𝑛) ↦−→ (𝑎1 + (𝑏1 − 𝑎1)𝑡1, . . . , 𝑎𝑛 + (𝑏𝑛 − 𝑎𝑛)𝑡𝑛),

with (𝑎1, . . . , 𝑎𝑛), (𝑏1, . . . , 𝑏𝑛) ∈ [0, 1]𝑛 such that 0 ≤ 𝑎𝑖 ≤ 𝑏𝑖 ≤ 1, for all 1 ≤ 𝑖 ≤ 𝑛. The image of 𝑐 defines a
𝑛-dimensional cube in [0, 1]𝑛 with a non-empty interior and faces parallel to the faces of the ambient unit
cube.

Definition 2.8.18. The little 𝑛-cube operad 𝐶𝑛 is defined as follows :

𝐶𝑛 ( 𝑗) =
{
(𝑐1, . . . , 𝑐 𝑗 ) | 𝑐𝑖 are little 𝑛-cubes with disjoint interior

}
⊆ Map

(
𝑗∐
𝑖=1

𝐽𝑛, 𝐽𝑛

)
.

The identity is defined by the element id𝐽𝑛 ∈ 𝐶𝑛 (1). The symmetric group Σ 𝑗 acts (freely) by permutation
on the indices of the tuple (𝑐1, . . . , 𝑐 𝑗 ). If we write 𝑐 = (𝑐1, . . . , 𝑐 𝑗 ), we define the composition operation 𝛾
as follows :

𝛾 : 𝐶𝑛 (𝑘) × 𝐶𝑛 ( 𝑗1) × · · · × 𝐶𝑛 ( 𝑗𝑘) −→ 𝐶𝑛 ( 𝑗1 + · · · + 𝑗𝑘)
(𝑐, 𝑑1, . . . , 𝑑𝑘) ↦−→ 𝑐 ◦ (𝑑1 + · · · + 𝑑𝑘).

Notice that there are natural inclusions:

𝐶𝑛 ( 𝑗) 𝐶𝑛+1 ( 𝑗)

𝑐 (𝑐1 × id𝐽 , . . . , 𝑐 𝑗 × id𝐽 ),

allowing to define 𝐶∞ ( 𝑗) = colim𝑛𝐶𝑛 ( 𝑗) for each 𝑗 ≥ 0. The composition 𝛾 extends naturally so that 𝐶∞ is
an operad.

We can reinterpret the spaces 𝐶𝑛 ( 𝑗) in terms of configuration space. Let 𝑀 be a 𝑛-manifold, the 𝑗-th
configuration space of 𝑀 is :

𝐹 (𝑀; 𝑗) =
{
(𝑥1, . . . , 𝑥 𝑗 ) ∈ 𝑀× 𝑗 | 𝑥𝑟 ≠ 𝑥𝑠 if 𝑟 ≠ 𝑠

}
⊆ 𝑀× 𝑗 .

It is a 𝑛 𝑗-manifold with Σ 𝑗 free-action on coordinates. For 1 ≤ 𝑛 ≤ ∞, the spaces 𝐶𝑛 ( 𝑗) are Σ 𝑗 -equivariantly
homotopic to 𝐹 (R𝑛; 𝑗) via the map :

𝐶𝑛 ( 𝑗) −→ 𝐹 (𝐽𝑛; 𝑗)
(𝑐1, . . . , 𝑐 𝑗 ) ↦−→ (𝑐1 (𝑝), . . . , 𝑐 𝑗 (𝑝)),
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where 𝑝 = ( 12 , . . . ,
1
2 ) in 𝐽

𝑛. This makes 𝐶1 an A∞-operad, 𝐶∞ a E∞-operad, 𝐶𝑛 a locally (𝑛 − 2)-connected
Σ-free operad.

Proposition 2.8.19. Given a pointed space 𝑋, its 𝑛-th iterated loop space Ω𝑛𝑋 has a natural 𝐶𝑛-algebra
structure.

Proof. Regard Ω𝑛𝑋 as the space Map
(
( [0,1]

𝑛

𝜕[0,1]𝑛 , ∗), (𝑋, ∗)
)
. Define the action :

𝜃 : 𝐶𝑛 ( 𝑗) × (Ω𝑛𝑋) 𝑗 −→ Ω𝑛𝑋,

as follows: given (𝑐1, . . . , 𝑐 𝑗 ) in 𝐶𝑛 ( 𝑗) and (𝑦1, . . . , 𝑦 𝑗 ) in (Ω𝑛𝑋) 𝑗 define 𝜃 (𝑐, 𝑦) as:

[0, 1]𝑛
𝜕 [0, 1]𝑛 −→ 𝑋

𝑡 ↦−→
{
𝑦𝑟 ◦ 𝑐−1𝑟 (𝑡), if 𝑡 ∈ im(𝑐𝑟 )
∗, if 𝑡 ∉ im(𝑐𝑟 ) for any 1 ≤ 𝑟 ≤ 𝑗

One can check that all the desired diagrams commute. □

Recall that given a pointed space 𝑋, the associated monad of 𝐶𝑛 is defined as:

𝐶𝑛 (𝑋) =
(∐
𝑗≥0

𝐶𝑛 ( 𝑗) ×Σ 𝑗
𝑋 𝑗

)/
∼ .

The above result implies that Ω𝑛𝑋 is also a 𝐶𝑛-algebra, hence there is a map 𝐶𝑛 (Ω𝑛𝑋) → Ω𝑛𝑋, for any
pointed space 𝑋. There is a natural map :

𝛼𝑛 : 𝐶𝑛 (𝑋) −→ Ω𝑛Σ𝑛𝑋,

defined as follows. The identity map on Σ𝑛𝑋 has an adjoint 𝑋 → Ω𝑛Σ𝑛𝑋. Applying the functor 𝐶𝑛 we get
the left map in the composite :

𝐶𝑛 (𝑋) −→ 𝐶𝑛 (Ω𝑛Σ𝑛𝑋) −→ Ω𝑛Σ𝑛𝑋,

and the right map is defined by the 𝐶𝑛-algebra structure on Ω𝑛Σ𝑛𝑋. The above composite defines the map
𝛼𝑛. It is a morphism of monads, where the monad structure on the functor Ω𝑛Σ𝑛 : Top∗ → Top∗ is defined
for any pointed space 𝑌 :

Ω𝑛Σ𝑛Ω𝑛Σ𝑛𝑌 −→ Ω𝑛Σ𝑛𝑌,

by a map Σ𝑛Ω𝑛Σ𝑛𝑌 → Σ𝑛𝑌 which is the adjoint of the identity map Ω𝑛Σ𝑛𝑌 → Ω𝑛Σ𝑛𝑌 . More concretly, the
map 𝛼𝑛 : 𝐶𝑛 (𝑋) → Ω𝑛Σ𝑛𝑋 can be regarded as follows :

𝐶𝑛 (𝑋) −→ Ω𝑛Σ𝑛𝑋 = Map

(
( [0, 1]

𝑛

𝜕 [0, 1]𝑛 , ∗), (Σ
𝑛𝑋, ∗)

)
((𝑐1, . . . , 𝑐 𝑗 ), (𝑥1, . . . , 𝑥 𝑗 )) ↦−→

©­­«
[0,1]𝑛
𝜕[0,1]𝑛 −→ Σ𝑛𝑋

𝑡 ↦−→
{
𝑡 ∈ [0,1]𝑛

𝜕[0,1]𝑛 = 𝑆𝑛 = Σ𝑛{∗, 𝑥𝑖}, if 𝑡 ∈ im(𝑐𝑖) ⊆ 𝐽𝑛
∗, if 𝑡 ∉ im(𝑐𝑖) for any 1 ≤ 𝑖 ≤ 𝑗

ª®®¬ .
Theorem 2.8.20 (Approximation). For any based space 𝑋, there is a natural map of 𝐶𝑛-algebras :

𝛼𝑛 : 𝐶𝑛 (𝑋) → Ω𝑛Σ𝑛𝑋,

for 1 ≤ 𝑛 ≤ ∞, and 𝛼𝑛 is a weak homotopy equivalence if 𝑋 is connected.
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Proof. We construct the following commutative diagram :

𝐶𝑛 (𝑋) 𝑋𝑛 𝐶𝑛−1 (Σ𝑋)

Ω𝑛Σ𝑛𝑋 𝑃Ω𝑛−1Σ𝑛𝑋 Ω𝑛−1Σ𝑛𝑋,

𝑝𝑛

𝑝

where 𝑝 is the usual path fibration to a space with fiber its loop space. The space 𝑋𝑛 is constructed such
that it is contractible and 𝑝𝑛 is a quasifibration if 𝑋 is connected. □

Theorem 2.8.21 (Recognition). If 𝑋 is a connected grouplike 𝐶𝑛-algebra, there exists a based space 𝑌 and
a weak equivalence of 𝐶𝑛-algebras between Ω𝑛𝑌 and 𝑋.

In order to construct this delooping of 𝑋, we use the two-sided bar construction in Top∗. Given a monad
(𝑀, 𝜇, 𝜂) in E and a category C, a 𝑀-functor in C is a functor 𝐹 : E → C with a natural transformation
𝜆 : 𝐹𝑀 ⇒ 𝐹 such that the following diagram commutes :

𝐹 (𝑀 (𝑀 (𝑋))) 𝐹𝑀 (𝑋), 𝐹 (𝑋) 𝐹 (𝑀 (𝑋))

𝐹𝑀 (𝑋) 𝐹 (𝑋), 𝐹 (𝑋).

𝐹 (𝜇𝑋 )

𝜆𝑀 (𝑋) 𝜆𝑋

𝐹 (𝜂𝑋 )

𝜆𝑋

𝜆𝑋

For instance, (𝑀, 𝜇) is itself a 𝑀-functor in E.

Definition 2.8.22. Given a monad (𝑀, 𝜇, 𝜂) in E, a 𝑀-functor (𝐹, 𝜆) in C, and a 𝑀-algebra (𝑋, 𝜉) in E,
define the two-sided bar construction of (𝐹, 𝑀, 𝑋) by :

𝐵𝑞 (𝐹, 𝑀, 𝑋) = 𝐹 (𝑀𝑞 (𝑋)).

The object is simplicial in C :

𝐹 (𝑋) 𝐹 (𝑀 (𝑋)) 𝐹 (𝑀 (𝑀 (𝑋))) 𝐹 (𝑀 (𝑀 (𝑀 (𝑋)))) · · ·

where the blue arrows are induced by 𝜉 : 𝑀 (𝑋) → 𝑋, the red arrows by 𝜆 : 𝐹 (𝑀 (𝑋)) → 𝐹 (𝑋), the green
arrows by 𝜇 : 𝑀 (𝑀 (𝑋)) → 𝑀 (𝑋), and the black arrows by 𝜂 : 𝑋 → 𝑀 (𝑋). We denote its geometric
realization by 𝐵(𝐹, 𝑀, 𝑋) =| 𝐵∗ (𝐹, 𝑀, 𝑋) |.

Proof. The operad 𝐶𝑛 is replaced by a ”nicer” equivalent operad 𝐷 so that 𝐵∗ (𝐹, 𝐷, 𝑋) is a strictly proper
simplicial space. We construct a zig-zag of maps :

𝑋 𝐵(𝐷, 𝐷, 𝑋) 𝐵(Ω𝑛Σ𝑛, 𝐷, 𝑋) Ω𝐵(Σ𝑛, 𝐷, 𝑋).

The map 𝐵(𝐷, 𝐷, 𝑋) → 𝑋 is induced by 𝐷 (𝑋) → 𝑋 as 𝑋 is a 𝐷-algebra and 𝐵(𝐷, 𝐷, 𝑋) should be regarded
as the usual simplicial resolution of 𝑋. The map 𝐵(𝐷, 𝐷, 𝑋) → 𝐵(Ω𝑛Σ𝑛, 𝐷, 𝑋) is induced by 𝛼𝑛 : 𝐷 → Ω𝑛Σ𝑛

(and should now be regarded as a morphism of 𝐷-functors). It is a weak equivalence when 𝑋 is connected
(not obvious on the simplicial resolution). The last map 𝐵(Ω𝑛Σ𝑛, 𝐷, 𝑋) → Ω𝑛𝐵(Σ𝑛, 𝐷, 𝑋) should be regarded
as the non-trivial weak equivalence | Ω𝑋∗ |→ Ω | 𝑋∗ |, true only when 𝑋 is connected. Thus let 𝑌 be
𝐵(Σ𝑛, 𝐷, 𝑋). □
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Chapter 3

Higher categories

3.1 Foundations

Definition 3.1.1. A simplicial set C is an ∞-category (or quasi-category) if it has inner horn filling — for
all 0 < 𝑘 < 𝑛, we have

Λ𝑘𝑛 C

Δ𝑛
∃

We shall see that ∞-categories are fibrant objects in sSet with the Joyal model structure.

Example 3.1.2.

1. If C is a Kan complex, then it is an ∞-category

2. If C is a category, then 𝑁C is an ∞-category.

Definition 3.1.3. Given an ∞-category C, the objects of C are the vertices,1 the morphisms are 1-simplices.
We have source and target maps 𝑑1, 𝑑0 : C1 → C0.

2 We define the set of morphisms from 𝑋 to 𝑌 as the
pullback

homC (𝑋,𝑌 ) C1

C1 C0 × C0.

⌟
(𝑠,𝑡 )

(𝑋,𝑌 )
1𝑋 ∈ C means 𝑋 ∈ C0
2We write 𝑓 : 𝑋 → 𝑌 in C to mean 𝑓 ∈ C1 with 𝑠 ( 𝑓 ) = 𝑋 and 𝑡 ( 𝑓 ) = 𝑌 .
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We have that homC (𝑋,𝑌 ) is the set of vertices of a simplicial set HomC (𝑋,𝑌 ), which forms a Kan complex
that we define later.

Definition 3.1.4. Given 𝑋 ∈ C we define id𝑋 ∈ C1 by 𝑠0 (𝑋).

How do we compose? Composition won’t be unique, but it will be unique up to homotopy.
Given 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 in C, this determines a map of simplicial sets Λ2

1 → C. By inner horn
lifting, we have

Λ2
1 C

Δ2

We refer to the filling as a composition:

𝑌

𝑋 𝑍.

𝑔𝑓

ℎ

Exercise 3.1.5. Given an ∞-category C, how can we define Cop? Would want that 𝑁 (Cop) � (𝑁C)op.3

Detour: Let 𝐴 ∈ Cat, and let C be a cocomplete category. Recall that Fun(𝐴op, Set) is the free cocom-
pletion. Given a functor 𝐴→ C, by universal property there is a map

𝐴 C

Fun(𝐴op, Set)

𝑄

|− |𝑄

This gives us an adjunction

| − |𝑄 : Fun(𝐴op, Set) ⇄ C : Sing𝑄 (−).

Here Sing𝑄 (−) = HomC (𝑄(−), 𝑋).

Example 3.1.6. If C = Top, then we can take ΔTop : Δ→ Top, sending [𝑛] to Δ𝑛Top. In this case, we recover
the usual | − | and Sing(−) adjunction.

Example 3.1.7. If C = Cat, there is a functor Δ → Cat sending [𝑛] to the associated poset category. We
get an associated adjunction:

𝜏 : sSet⇄ Cat : 𝑁,

since 𝑁 = HomCat ( [−],C).

Exercise 3.1.8. Describe 𝜏 : sSet→ Cat explicitly.

We call 𝜏 the fundamental category functor, essentially it will produce the homotopy category of an
∞-category.

Definition 3.1.9. Given an ∞-category C, two morphisms 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 are homotopic, written
𝑓 ≃ 𝑔, if there exists a 2-simplex 𝜎 : Δ2 → C with boundary (𝑔, 𝑓 , id𝑋):

𝑋

𝑋 𝑌.

𝑔id𝑋

𝑓

3Every Kan complex has that Cop � C.
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Example 3.1.10. If C is an ordinary category, then in 𝑁C, we have that 𝑓 ≃ 𝑔 if and only if 𝑓 = 𝑔.

Proposition 3.1.11. Given C an ∞-category, and 𝑋,𝑌 ∈ C, the homotopy relation provides an equivalence
relation on homC (𝑋,𝑌 ).

Definition 3.1.12. We denote by [ 𝑓 ] the homotopy class of 𝑓 .

Sketch. We first need to show reflexivity, so we want to find a 2-cell witnessing

𝑋

𝑋 𝑌.

𝑓

𝑓

We check that this is 𝑠0 ( 𝑓 ), where 𝑓 ∈ C1, and 𝑠0 : C1 → C2.
For symmetry, suppose we have 𝑓 ≃ 𝑔. We want to show 𝑔 ≃ 𝑓 . We can fill a Λ3

2 witnessing this.
Transitivity is left as an exercise. □

Definition 3.1.13. Given C an ∞-category, define the 1-category Ho(C) to be the homotopy category, given
by

ObHo(C) = C0

HomHo(C) (𝑋,𝑌 ) = homC (𝑋,𝑌 )/≃ .

In order to show this, we need to argue that composition is well-defined up to homotopy.

Suppose we have two compositions

𝑌

𝑋 𝑍.

𝑔𝑓

ℎ1

𝑌

𝑋 𝑍.

𝑔𝑓

ℎ2

We want to argue that ℎ1 ≃ ℎ2. This can be done by filling the horn of a 3-simplex.

Proposition 3.1.14. When we restrict the adjunction 𝜏 ⊣ 𝑁 to ∞-categories, we get an adjunction

Ho(−) : Cat∞ ⇄ Cat : 𝑁.

The way to compose arrows is contractible.

Definition 3.1.15. The internal hom of simplicial set is given as follows. Given 𝑋 and 𝑌 simplicial sets, we
define Hom• (𝑋,𝑌 ) as:

Hom• (𝑋,𝑌 ) = HomsSet (Δ• × 𝑋,𝑌 ).

Theorem 3.1.16. The inclusion Λ2
1 ↩−→ Δ2 induces a map

Hom∗ (Δ2,C) → Hom∗ (Λ2
1,C)

which is a trivial Kan fibration if and onlly if C is an ∞-category.

Proof. Here is the main idea. We need to show there is a lifting:

𝜕Δ𝑛 Hom• (Δ2,C)

Δ𝑛 Hom• (Λ2
1,C).

∃
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By adjunction, this is equivalent to have a lifting:

(Δ𝑛 × Λ2
1)

∐
𝜕Δ𝑛×Λ2

1

(𝜕Δ𝑛 × Δ2) C

Δ𝑛 × Δ2

∃

This will follow from seeing that C is a fibrant object in model structure on sSet, and the left vertical map
is a trivial cofibration, because it is generated by inner anodyne Λ𝑛

𝑖
↩→ Δ𝑛 cofibrations. □

Definition 3.1.17. An inner fibration in simplicial sets is a map which has the right lifting property with
respect to the inclusions Λ𝑛

𝑖
↩→ Δ𝑛.

As a consequence, we can take a pullback diagram:

𝑃 Hom∗ (Δ2,C)

Δ0 Hom∗ (Λ2
1,C).

⌟

Then the pullback 𝑃→ Δ0 should be a trivial fibration, meaning that 𝑃 is a contractible Kan complex.

Definition 3.1.18. Given C an∞-category and 𝑋,𝑌 ∈ C, recall that a map 𝑓 : 𝑋 → 𝑌 corresponds to Δ1 → C

whose faces are 𝑋 and 𝑌 . An 𝑛-morphism from 𝑋 to 𝑌 is simply a map Δ𝑛 → C such that Δ{0,...,𝑛−1} = 𝑋

and Δ{𝑛} = 𝑌 .

For 𝑛 ≥ 2, all 𝑛-morphisms are invertible in some sense.

Definition 3.1.19. Two objects 𝑋 and 𝑌 in C are equivalent, written 𝑋 ≃ 𝑌 , if there exists a 1-morphism
𝑓 : 𝑋 → 𝑌 in C such that [ 𝑓 ] in Ho(C) is an isomorphism.

Definition 3.1.20. An ∞-groupoid is an ∞-category for which Ho(C) is a groupoid, meaning all the 1-
morphisms are equivalences.

Theorem 3.1.21. (Homotopy hypothesis) We get that C is an ∞-groupoid if and only if C is a Kan complex.

Example 3.1.22. How to define the opposite Cop of an ∞-category? This is a good exercise to try on
your own first. Here is the solution. We can view Δ as a subcategory of finite linear ordered sets 𝐿𝑖𝑛 with
non-decreasing functions. This has an involution 𝐿𝑖𝑛 → 𝐿𝑖𝑛 which sends a poset (𝐼, ≤) to (𝐼, ≤op) where
𝑖 ≤op 𝑗 whenever 𝑗 ≤ 𝑖. This defines a similar functor op : Δ → Δ which is identity on object, and sends a
map 𝛼 : [𝑚] → [𝑛] to op(𝛼) : [𝑚] → [𝑛] defined as 𝑖 ↦→ 𝑛 − 𝛼(𝑚 − 𝑖). Therefore, given a simplicial set 𝑋•, we
can define 𝑋op

• by precomposing by the previous functor. Essentially, 𝑑op
𝑖

= 𝑑𝑛−𝑖 and 𝑠
op
𝑖

= 𝑠𝑛−𝑖. Doing this
for an ∞-category shows we switch source and target.

Proposition 3.1.23. If C is an ∞-category, then Cop is also an ∞-category.

Proof. Notice we have an isomorphism of simplicial sets (Δ𝑛)op � Δ𝑛 and that sends (Λ𝑛
𝑖
)op to Λ𝑛

𝑛−𝑖. □

3.2 Equivalence of ∞-categories
What is the correct notion of an equivalence of ∞-categories? Let us first see how the notion of opposite is
compatible with ordinary sense.

Proposition 3.2.1. Given C an ordinary category, then we obtain an isomorphism of simplicial sets 𝑁 (C)op �
𝑁 (Cop)
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Proof. The string

𝑋0
𝑓1→ 𝑋1

𝑓2→ · · · → 𝑋𝑛

is sent to

𝑋𝑛
𝑓
op
𝑛→ 𝑋𝑛−1

𝑓
op
𝑛−1→ · · · → 𝑋0 □

Just as groupoids are equivalent to their opposite categories, the same should be true for ∞-groupoids.
This is first observed by the following result.

Proposition 3.2.2. Given 𝑋 a topological space, then Sing(𝑋) � Sing(𝑋)op as simplicial sets.

Proof. A 𝑛-simplex |Δ𝑛 | → 𝑋 is send to |Δ𝑛 | �→ |Δ𝑛 | → 𝑋 where the homeomorphism is defined via
(𝑡0, 𝑡1, . . . , 𝑡𝑛) ↦→ (𝑡𝑛, 𝑡𝑛−1, . . . , 𝑡0). □

Therefore, given 𝑋 a Kan complex, we obtain:

𝑋 Sing( |𝑋 |) Sing( |𝑋 |)op 𝑋op.
≃ � ≃

Of course, isomorphism of simplicial sets is too strong of a notion for an equivalence of ∞-categories. At
most, we would want the notion to not be stronger on spaces: two Kan complexes that are equivalent as
homotopy-types should also be equivalent as ∞-categories.

Let us get inspired by ordinary categories. Two ordinary categories C and D are equivalent if a functor
𝐹 : C → D induces an isomorphism of sets HomC (𝑋,𝑌 ) � HomD (𝐹 (𝑋), 𝐹 (𝑌 )) and 𝐷 � 𝐹 (𝐶) for all 𝐷 ∈ D

for some 𝐶 ∈ C. An easier way to generalize, is to have another functor 𝐺 : D→ C such that 𝐹 ◦𝐺 and 𝐺 ◦𝐹
are equivalent in the functor categories to the identity functors. Let us also record the following.

Example 3.2.3. There is a canonical model structure on Cat where weak equivalences are given by equiv-
alences of categories, cofibrations are functors that are injective on objects, fibrations are isofibrations. An

isofibration is a functor 𝑝 : C → D such that for all 𝐶 ∈ C, for all isomorphism 𝑔 : 𝐷
�→ 𝐷′ in D where

𝑝(𝐶) = 𝐷, there exists 𝑓 : 𝐶 → 𝐶′ such that 𝑝( 𝑓 ) = 𝑔.

Definition 3.2.4. A functor of ∞-categories C → D is a morphism of simplicial sets (i.e. a natural trans-
formation).

This definition provides all the expectations of what a functor should do: preserve the choice of com-
positions, preserve equivalences, preserve identities, send 𝑛-morphisms to 𝑛-morphisms (exercise). Although
evident from the definition, it is crucial to keep in mind that it is not enough to define a functor by simply
assigning objects and 1-morphisms, we must also define on all higher morphisms.

Example 3.2.5. An ordinary functor C→ D defines a functor 𝑁 (C) → 𝑁 (D) of ∞-categories.

Example 3.2.6. Given an ∞-category C and an ordinary category D, then the data of a functor C→ 𝑁 (D)
is equivalent to a functor Ho(C) → D.

Example 3.2.7. Given an equivalence 𝑓 ≃ 𝑔 in C, we obtain 𝐹 ( 𝑓 ) ≃ 𝐹 (𝑔) for any functor 𝐹 : C → D, and
thus we obtain an ordinary functor 𝐹 : Ho(C) → Ho(D).

Example 3.2.8. Given C an ∞-category, and 𝑋 a topological space, a functor C→ Sing(𝑋) is equivalent to
a continuous map |C| → 𝑋.

Definition 3.2.9. A diagram in an ∞-category is a morphism of simplicial sets 𝐾• → C, where 𝐾• is any
simplicial set.

Example 3.2.10. A diagram Δ1 × Δ1 → C makes sense of a commutative diagram:

• •

• •
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As hint of what the ∞-category of functors of ∞-categories, we have the following.

Example 3.2.11. We have an isomorphism of simplicial sets:

𝑁 (Fun(C,D)) � Hom• (𝑁 (C), 𝑁 (D)).

Theorem 3.2.12. Given 𝐾 a simplicial set, C an ∞-category, then Hom• (𝐾,C) is an ∞-category.

Proof. Notice that Hom• (𝐾,−) preserves trivial Kan fibrations (because sSet with Kan model structure is a
monoidal model category). Therefore, as C is an ∞-category, by Theorem 3.1.16, we obtain:

Hom• (𝐾,Hom• (Δ2,C)) −→ Hom• (𝐾,Hom• (Λ2
1,C))

which by symmetry, is equivalent to trivial Kan fibration:

Hom• (Δ2,Hom• (𝐾,C)) −→ Hom• (Λ2
1,Hom• (𝐾,C))

We conclude by Theorem 3.1.16 again. □

Definition 3.2.13. Given an ∞-category C, and a simplicial set 𝐾, we denote by Fun(𝐾,C) the ∞-category
Hom• (𝐾,C).

Definition 3.2.14. A natural transformation between functors C → D is a morphism in Fun(C,D), i.e. a
map of simplicial sets Δ1 × C→ D.

Definition 3.2.15. Given C an ∞-category, define C≃ to be the maximal ∞-groupoid of C: the subsimplicial
set for which 𝑛-simplices carry edges to equivalences in C.

Example 3.2.16. For C an ordinary category, we have an isomorphism of simplcial sets 𝑁 (C�) � 𝑁 (C)≃.

Exercise: Show C≃ is indeed a Kan complex.

Definition 3.2.17. The homotopy category of ∞-categories ℎ𝑄𝐶𝑎𝑡 is the category for which objects are
∞-categories and for which the hom sets are the equivalence classes of functors:

Homℎ𝑄𝐶𝑎𝑡 (C,D) = 𝜋0 (Fun(C,D)≃).

We obtain an adjunction:

ℎ𝑇𝑜𝑝 ℎ𝑄𝐶𝑎𝑡.⊥
(−)≃

Definition 3.2.18. A functor 𝐹 : C→ D is an equivalence of ∞-categories if it is an isomorphism in ℎ𝑄𝐶𝑎𝑡.

Example 3.2.19. Let C and D be ordinary categories. A functor C→ D is an equivalence of categories if
and only if 𝑁 (C) → 𝑁 (D) is an equivalence of ∞-categories.

Example 3.2.20. Given 𝑋 and 𝑌 are Kan complexes, then 𝑋 → 𝑌 is a simplicial homotopy equivalence if
and only if it is an equivalence of ∞-categories.

Remark 3.2.21. Given C and D are ∞-categories, if C→ D is an equivalence of ∞-categories, then it is a
simplicial homotopy equivalence. However, the converse is not true.

Example 3.2.22. If C→ D is an equivalence of ∞-categories, where D is actually a Kan complex, then C

is also a Kan complex.

Definition 3.2.23. The Joyal model structure on sSet can be defined as follows. The fibrant objects are ∞-
categories, the weak equivalences on fibrant objects are precisely the equivalence of ∞-categories, cofibrations
are monomorphisms, fibrations are isofibrations (inner fibrations with identical property than ordinary case).
We obtain a Quillen adjunction between the two model structures:

sSetJoyal sSetKan.⊥
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Last time: Recall that a 1-morphism in Fun(C,D)4 is precisely a natural transformation 𝜂 : 𝐹 → 𝐺,
where 𝐹, 𝐺 : C→ D. In other words, it is 𝜂 : Δ1 × C→ D.

We have hQCat = Ho(Cat∞), where objects are infinity categories, and the morphisms are

HomhQCat (C,D) = 𝜋0 (Fun(C,D)≃) .

That is, it is the set of equivalence classes of functors C→ D.
If C is an ∞-category, and 𝑋,𝑌 ∈ C, we defined HomC (𝑋,𝑌 )• to be the simplicial set given by the pullback

HomC (𝑋,𝑌 )• Fun(Δ1,C)

Δ0 Fun({0} ,C)• × Fun({1} ,C).

⌟

Proposition 3.2.24. We have that HomC (𝑋,𝑌 ) ∈ Kan.

Sketch. This follows from a more general fact that for 𝐴 ↩−→ 𝐵 a subsimplicial set with 𝐴0 = 𝐵0, and C an
∞-category, then 𝑃 is always a Kan complex

𝑃 Fun(𝐵,C)

Δ0 Fun(𝐴,C).

⌟

𝑓

Need to show that every 𝑢 in Fun(𝐵,C)1 in the pullback is a weak equivalence. We have an evaluation
map for every 𝑏 ∈ 𝐵0 = 𝐴0, given by ev𝑏 : Fun(𝐵,C) → Fun({𝑏} ,C), mapping 𝑢 to 𝑢 𝑓 (𝑏) . We claim that
𝑢 𝑓 (𝑏) = id 𝑓 (𝑏) , since the diagram commutes

Fun(𝐵,C) Fun({𝑏} ,C)

Fun(𝐴,C)

□

Example 3.2.25. Given 𝑓 ≃ 𝑔 in an∞-category C, they must belong in same path component of HomC (𝑋,𝑌 ),
and so HomHo(C) (𝑋,𝑌 ) � 𝜋0 (HomC (𝑋,𝑌 )).

Theorem 3.2.26. A functor 𝐹 : C→ D is an equivalence of ∞-categories if and only if we have both:

• weak homotopy equivalence HomC (𝑋,𝑌 )
∼→ HomD (𝐹 (𝑋), 𝐹 (𝑌 )) for all objects 𝑋,𝑌 ∈ C;

• 𝜋0 (C≃) → 𝜋0 (D≃) is surjective.

3.3 Adjoint functors

Definition 3.3.1. Let 𝐹 : C→ D, and 𝐺 : D→ C be functors of ∞-categories. We say that 𝐹 ⊣ 𝐺 if there
exist natural transformations 𝜂 : idC → 𝐺𝐹 ad 𝜖 : 𝐹𝐺 → idD so that:

1. there exists Δ2 → Fun(C,D) witnessing

𝐹𝐺𝐹

𝐹idC idC𝐹.

𝜖 id𝐹idC𝜂

id

4The simplicial set Fun(Δ• × C,D)
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2. there exists Δ2 → Fun(D,C) witnessing

𝐺𝐹𝐺

idC𝐺 𝐺idC.

id𝜖𝜂id

id

Remark 3.3.2. We have that 𝜂 : id → 𝐺𝐹 depends only on [𝜂] in Ho(Fun(C,D)). If 𝜂 is given, then 𝜖 is
unique up to homotopy.

Example 3.3.3. If C and D are ordinary categories, then we have a 1-categorical adjunction

𝐹 : C⇄ D : 𝐺

if and only if we have an ∞-categorical adjunction

𝑁𝐹 : 𝑁C⇄ 𝑁D : 𝑁𝐺.

Example 3.3.4. If 𝑋,𝑌 ∈ Kan, then 𝐹 : 𝑋 → 𝑌 is an adjoint if and only if 𝐹 is a homotopy equivalence of
simplicial sets. The unit and counit become the witnesses of homotopy equivalence.

Remark 3.3.5. If we have an adjunction 𝐹 : C ⇄ D : 𝐺 of ∞-categories, then 𝐹 and 𝐺 are homotopy
equivalences of simplicial sets. The converse is not true in general.

Exercise 3.3.6. If 𝐹 : C → D is an equivalence of ∞-categories, then it is both a left and right adjoint
functor.

Proposition 3.3.7. Given 𝐹 : C⇄ D : 𝐺 of ∞-categories, then

Ho(𝐹) : Ho(C) ⇄ Ho(D) : Ho(𝐺)

is an adjunction of 1-categories. That is, if we know 𝐹 ⊣ 𝐺 in ∞-categories, then to check if 𝜂 : idC → 𝐺𝐹

is a unit, it is enough to check that Ho(𝜂) is the unit.

However the converse is not true!
Warning: Suppose we take 𝐹 : Δ0 → 𝑋 with 𝑋 ∈ Kan simply connected, and 𝐹 picks 𝑥 ∈ 𝑋0. Then

Ho(𝐹) ⊣ Ho(𝐺) because Ho(𝑋) will be simply connected. But it does not imply that 𝐹 ⊣ 𝐺 unless 𝑋 is
contractible.

There HomHo(D) (𝐹𝐶, 𝐷) � HomHo(C) (𝐶,𝐺𝐷) for any 𝐶 ∈ C and 𝐷 ∈ D.

Theorem 3.3.8. Take 𝐹 : C→ D and 𝐺 : D→ C functors of ∞-categories. Then 𝐹 ⊣ 𝐺 with unit 𝜂 if and
only if the composite

HomD (𝐹𝐶, 𝐷)
𝐺−→ HomC (𝐺𝐹𝐶,𝐺𝐷)

𝜂∗

−−→ HomC (𝐶,𝐺𝐷)

is a weak homotopy equivalence between Kan complexes (aka a homotopy equivalence) for all 𝐶, 𝐷.

The forward direction is straightforward, but the backwards direction uses (co)cartesian fibration stuff.

3.4 Limits and colimits

Recall that if C is an ordinary category, then 𝑖 ∈ C is initial if for all 𝑋 ∈ C, there is a unique 𝑖
!−→ 𝑋. That

is, HomC (𝑖, 𝑋) = ∗.

Definition 3.4.1. In an ∞-category C, we have that 𝑖 ∈ C is initial if HomC (𝑖, 𝑋) ≃ ∗ is contractible for all
𝑋 ∈ C.
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Definition 3.4.2. Let C be an ∞-category, and 𝐾• ∈ sSet. Then for any 𝑋 ∈ C, denote by 𝑋 ∈ Fun(𝐾,C)
the constant functor valued at 𝑋. The assignment 𝑋 ↦→ 𝑋 defines a diagonal map

Δ : C→ Fun(𝐾,C).

This is defined by precomposing with 𝐾 → Δ0, and looking at C ≃ Fun(Δ0,C) → Fun(𝐾,C).

Definition 3.4.3. Let 𝑢 : 𝐾 → C be a diagram. We say a natural transformation 𝛼 : 𝐿 → 𝑢 exhibits 𝐿 ∈ C
as a limit of 𝑢 if for all 𝑋 ∈ C, we have that the composite

HomC (𝑋, 𝐿)
Δ−→ HomFun(𝐾,C) (𝑋, 𝐿)

𝛼∗−−→ HomFun(𝐾,C) (𝑋, 𝑢)

is a (weak) homotopy equivalence of Kan complexes.

Definition 3.4.4. We say that 𝛽 : 𝑢 → 𝐶 exhibits 𝐶 as a colimit of 𝑢 if, for all 𝑌 ∈ C, the composite

HomC (𝐶,𝑌 )
Δ−→ HomFun(𝐾,C) (𝐶,𝑌 )

𝛽∗

−−→ HomFun(𝐾,C) (𝑢, 𝐶)

is a (weak) homotopy equivalence.

Note that if 𝛼 or 𝛽 exist, they are unique up to equivalence.

Example 3.4.5. If C is an ordinary category, then 𝑢 : 𝐾 → 𝑁C is equivalent to a map 𝜏(𝑢) : 𝜏𝐾 → C. We
can check that 𝐿 ∈ C is lim(𝜏𝑢) in a 1-categorical sense if and only if 𝐿 ∈ C is a limit of 𝑢 in an ∞-categorical
sense.

Example 3.4.6. Let 𝑓 : 𝑋 → 𝑌 in an ∞-cat C. Then 𝑓 is an equivalence if and only if 𝑓 exhibits 𝑌 as a
colimit {𝑋} → C, if and only if 𝑓 exhibits 𝑋 as a limit {𝑌 } → C.

Example 3.4.7. Taking the identity diagram ∅ → C, the notion of limit/colimit matches the notion of
terminal/initial object.

Proposition 3.4.8. A limit 𝐿 ∈ C is unique up to homotopy. Therefore we usually define it as lim𝐾 (𝑢).

Proposition 3.4.9. We have that C admits all 𝐾-indexed limits if and only if

Δ : C→ Fun(𝐾,C)

is a left adjoint. The right adjoint is given by lim𝐾 (−).

Equalizers are limits along Δ1 ⨿𝜕Δ1 Δ1, pullbacks are limits along Δ1 × Δ1 − (0, 0), etc.

3.5 Localization
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Definition 3.5.1. Let C and D be ∞-categories. Let 𝑊 be a collection of edges in C, with no further
assumption. Denote by Fun𝑊 (C,D) the full subcategory of Fun(C,D) spanned by functors 𝐹 : C → D that
carry edges of 𝑊 into equivalences in D. Formally, this is the pullback in sSet:

Fun𝑊 (C,D) Fun(C,D)

Fun(𝑊,D≃) Fun(𝑊,D).

A localization of C with respect to 𝑊 is an ∞-category C[𝑊−1] together with a functor 𝛾 : C → C[𝑊−1]
satisfying the following universal property. For any ∞-category D, the functor 𝛾 induces an equivalence of
∞-categories:

𝛾∗ : Fun(C[𝑊−1],D) ≃−→ Fun𝑊 (C,D).
The definition can be extended to any simplicial set C, not necessarily an ∞-category.

The functor ℎ𝑄𝐶𝑎𝑡 → Set that is defined by:

D ↦→ 𝜋0 (Fun𝑊 (C,D)≃) = 𝜋0 (Fun(C[𝑊−1],D)≃) = Homℎ𝑄𝐶𝑎𝑡 (C[𝑊−1],D)

is corepresented by C[𝑊−1] and is thus unique up to isomorphism in ℎ𝑄𝐶𝑎𝑡, i.e. is unique up to equivalence
of ∞-categories (if it exists).
Theorem 3.5.2. The localization 𝛾 : C→ C[𝑊−1] always exists.

Before proving this, let us notice the following.

Example 3.5.3. Let 𝑊 ⊆ Δ1 be the unique non-degenerate 1-simplex. Then Δ1 [𝑊−1] = Δ0 and 𝛾 : Δ1 → Δ0

is the localization. Indeed:
D ≃ Fun(Δ0,D) ≃→ Fun𝑊 (Δ1,D) = 𝐸𝑞(D)

where 𝐸𝑞(D) are the equivalences in D, defined on object 𝑋 to id𝑋, is a trivial Kan fibration.

This observation can be extended to following.

Lemma 3.5.4. Let 𝑄 be a contractible Kan complex. Let 𝑒 : Δ1 ↩→ 𝑄 be a monomorphism in sSet. Let
𝑊 ⊆ Δ1 be the unique non-degenerate 1-simplex. Then there is an equivalence of ∞-categories:

Fun(𝑄,D) ≃→ Fun𝑊 (Δ1,D) = 𝐸𝑞(D).

Proof. Exercise. □

Proof of Theorem 3.5.2. Let 𝐹 : C → D be in Fun𝑊 (C,D). For all 𝑤 ∈ 𝑊 , this defines 𝐹 (𝑤) : Δ1 → D≃.
Factor this morphism in the model category sSetKan:

Δ1 D≃

𝑄𝑤

𝐹 (𝑤)

∼
𝑞𝑤

By construction, 𝑄𝑤 is a contractible Kan complex. We can consider the following pushout in sSet:∐
𝑤∈𝑊

Δ1 C

∐
𝑤∈𝑊

𝑄𝑤 C′

D

∼ 𝛾′

𝐺

∃
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Given any ∞-category D fitting into the diagram above, notice 𝐺 (𝑤) ∈ D≃ by commutativity. Therefore the
induced map by 𝛾′:

Fun(C′,D) −→ Fun𝑊 (C,D)

is an equivalence of ∞-categories. Indeed in the diagram:

Fun(C′,D) Fun𝑊 (C,D) Fun(C,D)

∏
𝑤∈𝑊

Fun(𝑄𝑤 ,D)
∏
𝑤∈𝑊

𝐸𝑞(D) ∏
𝑤∈𝑊 Fun(Δ1,D)

the right square is a pullback by definition of Fun𝑊 (C,D), the outer rectangle is a pullback since Fun(−,D)
sends pushout to pullbacks. Therefore, the left square is a pullback. However, by the lemma, we know the
left bottom map is a trivial Kan fibration, therefore the top left map is a trivial Kan fibration. Thus 𝛾′

defines an equivalence of ∞-categories as desired. We force now C′ to be an ∞-category by performing a
factorization in sSetJoyal on C′ → D with a trivial cofibration and followed by fibration, which thus defines
C[𝑊−1] with same property as C′. □

We can have a better descriptio of C[𝑊−1] when we have more assumption on 𝑊 .

Definition 3.5.5. Let C be an ∞-category and 𝑊 a collection of edges in C. We say 𝑍 ∈ C is 𝑊-local if for
all 𝑤 : 𝑋 → 𝑌 in 𝑊 , we have a weak homotopy equivalence:

HomC (𝑌, 𝑍)
≃→ HomC (𝑋, 𝑍).

We say 𝑊 is localizing if:

• equivalences in C are in 𝑊 ;

• 𝑊 satisfy 2-out-of-3;

• for all 𝑌 ∈ C, there exists 𝑤 : 𝑌 → 𝑍 in 𝑊 such that 𝑍 is 𝑊-local.

Remark 3.5.6. If 𝑤 : 𝑋 → 𝑌 in 𝑊 , 𝑋 and 𝑌 are 𝑊-local, then 𝑤 must be an equivalence.

Theorem 3.5.7. Suppose C is an ∞-category with 𝑊 is localizing collection of edges, then C[𝑊−1] can be
defined as the full subcategory spanned by the 𝑊-local objects and 𝛾 : C→ C[𝑊−1] is a left adjoint:

C C[𝑊−1]
𝛾

⊥

Proof. This follows by the previous remark and the universal property of C[𝑊−1]. Give 𝑋 ∈ C, one can
define informally 𝛾(𝑋) by a choice of a map 𝑤 : 𝑋 → 𝑌 where 𝑌 is 𝑊-local, and given 𝑋 → 𝑋 ′ in C, we can
define a map 𝛾(𝑋) → 𝛾(𝑋 ′):

𝑋 𝑋 ′

𝛾(𝑋) 𝛾(𝑋 ′).
∈𝑊 ∈𝑊

and using the 2-out-of-3 property it is an equivalence whenever 𝑋 → 𝑋 ′ is in 𝑊 . □

Definition 3.5.8. Let M be a model category with 𝑊 as class of weak equivalences. The Dwyer–Kan
localization of M with𝑊 is the ∞-category 𝑁 (M) [𝑊−1] together with the localization 𝑁 (M) → 𝑁 (M) [𝑊−1].
This is sometimes referred as the underlying ∞-category of M.
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Remark 3.5.9. If M admits functorial fibrant and cofibrant replace, then:

𝑁 (M𝑐) [𝑊−1] ≃ 𝑁 (M 𝑓 ) [𝑊−1] ≃ 𝑁 (M𝑐 𝑓 ) [𝑊−1] ≃ 𝑁 (M) [𝑊−1] .

How should one think of 𝑁 (M) [𝑊−1]? Its objects are the objects in M, but considered up to weak
equivalence, the edges 𝑋 → 𝑌 are elements in HomM (𝑋,𝑌 )/≃, the composition:

𝑌

𝑋 𝑍,

is defined up to weak equivalence. In particular, every morphism can be considered to be a cofibration or
a fibration. The homotopy relation in 𝑁 (M) [𝑊−1] is the same as defined in model categories. Notably, we
obtain an equivalence of categories:

Ho(𝑁 (M) [𝑊−1]) ≃ Ho(M).

Example 3.5.10. The ∞-category of spaces S, i.e. the ∞-category of ∞-groupoids, is defined as the Dwyer–
Kan localization 𝑁 (sSet) [𝑊−1Kan], and is denoted S.

Example 3.5.11. The (large)∞-category of∞-categories is defined as the Dwyer–Kan localization 𝑁 (sSet) [𝑊−1Joyal]
and is denoted Cat∞.

Example 3.5.12. Let 𝑅 be a commutative ring. DenoteD(𝑅) to the Dwyer–Kan localization of 𝑁 (Ch𝑅) [𝑊−1proj].

Theorem 3.5.13 (HA 1.3.4.20). If M is a combinatorial model category, then it is Quilllen equivalent to a
simplicial model category 𝑀 and 𝑁 (M) [𝑊−1] is equivalent to the homotopy coherent nerve of 𝑀𝑐 𝑓 .

Remark 3.5.14. If M is a simplicial model category, we can define M[𝑊−1] as a the hammock localization.

Definition 3.5.15. An ∞-category C is said to be compact if 𝜋0 (C≃) is compact as a set (i.e. small), and
𝜋𝑖 (HomC (𝑋,𝑌 )) are compact as sets.

Definition 3.5.16. An object 𝑋 ∈ C is compact if HomC (𝑋,−) : C→ S preserves filtered colimits.

Remark 3.5.17. An ∞-category C is compact if and only if it is compact as an object in Cat∞.

Definition 3.5.18. An ∞-category C is said to be presentable if it has filtered colimits, and there exists an
essentially small ∞-category P ⊆ C comprised of compact objects which generates C under filtered colimits.

Proposition 3.5.19. An ∞-category C is presentable if and only if C is equivalent to Fun𝑊 (Pop, S) for some
small category P and some set of maps 𝑊 in Fun(Pop, S).

Theorem 3.5.20. Let C be an ∞-category. Then C is presentable if and only if there exists a combinatorial
model category M such that C ≃ 𝑁 (M) [𝑊−1].

Presentable ∞-categories are combinatorial model categories.

Theorem 3.5.21. Let M be a combinatorial model category. Let 𝐽 be a small category. Recall we can
give Fun(𝐽,M) the projective and injective model structures, both with weak equivalence defined levelwise.
Evaluation 𝐽 × Fun(𝐽,M) → M lifts to a map 𝑁 (𝐽) × 𝑁 (Fun(𝐽,M)) → 𝑁 (M) that induce an equivalence of
∞-categories:

𝑁 (Fun(𝐽,M)) [𝑊−1Fun]
≃−→ Fun(𝑁 (𝐽), 𝑁 (𝑀) [𝑊−1]).

Proof. Universal property. □
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Theorem 3.5.22. Given a left Quillen functor 𝐹 : M1 →M2 between combinatorial model categories with
weak equivalence classes denoted 𝑊1 and 𝑊2 respectively. Then the total left derived functor L𝐹 induces a
functor on the Dwyer–Kan localizations:

L𝐹 : 𝑁 (M1) [𝑊−11 ] −→ 𝑁 (M2) [𝑊−12 ]

that is a left adjoint.

Corollary 3.5.23. Let M be a combinatorial model category. Then colimits in 𝑁 (M) [𝑊−1] correspond
precisely to homotopy colimits in M. Similarly, limits in 𝑁 (M) [𝑊−1] correspond precisely to homotopy
limits in M.

3.6 Straightening/unstraightening—Higher categorical Grothendieck
construction

Motivation: Let 𝑋 be a space, and let Cov(𝑋) denote the 1-category of covering spaces of 𝑋, so that in
particular the fibers 𝑓 −1 of 𝑓 : 𝐸 → 𝑋 are discrete sets. This defines a map in Top from

𝑋 → Set�,

to sets with the discrete topology. Another way to think about this is as a functor

St : Cov(𝑋) → Fun(Π1 (𝑋), Set)

(𝐸
𝑝
−→ 𝑋) ↦→

[
𝑥 ↦→ 𝑓 −1 (𝑥)

]
.

A path from 𝑥 to 𝑦 (a morphism in Π1 (𝑋)) induces a set map 𝑓 −1 (𝑥) → 𝑓 −1 (𝑦).
This is an equivalence of categories! This is called the fundamental theorem of covering spaces.
This is a first instance of straightening.
If we view 𝑋 as an ∞-groupoid, then Π1 (𝑋) = Ho(𝑋) is its homotopy category, and we have that

Fun(Π1 (𝑋), Set) � Fun(𝑋, 𝑁 (Set)),

since nerve is right adjoint to the homotopy category.
We can denote by Cov𝑋 ⊆ S/𝑋 to be the full subcategory of the infinity category of spaces over 𝑋 spanned

by covering spaces. Then we want to show that

Cov𝑋 ≃ Fun(𝑋, 𝑁 (Set)).
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We have an unstraightening functor

Unst : Fun(𝑋, 𝑁 (Set)) → Cov𝑋,

given by sending some 𝐹 : 𝑋 → 𝑁 (Set) to the pullback5

𝐸 𝑁 (Set∗)≃

𝑋 𝑁 (Set)≃
𝐹

More generally, if we don’t require the fibers to be discrete, then we can take 𝑓 : 𝐸 → 𝑋 to be any
continuous map. Then we get a functor6

St : S/𝑋 → Fun(𝑋, S)

(𝐸
𝑓
−→ 𝑋) ↦→

[
𝑥 ↦→ 𝑓 −1 (𝑥)

]
.

Unstraightening is of the form

Unst : Fun(𝑋, S) → S/𝑋
𝐹 ↦→ hocolim𝑋𝐹 = ∪𝑥∈𝑋𝐹−1 (𝑥)/∼ .

Let 𝑋 be connected and suppose 𝑋 ≃ 𝐵𝐺. Then we define 𝐺-modules in spaces to be

Mod𝐺 (S) := Fun(𝐵𝐺, S) ∼−→ S/𝐵𝐺.

If we take some 𝑀 : 𝐵𝐺 → S, and we post-compose with sections S/𝐵𝐺 → S, then 𝑀 maps to 𝑀ℎ𝐺.
More generally, given 𝐹 : 𝑋 → S, the limit lim𝑋 S is given by

Fun(𝑋, S) Unst−−−−→ S/𝑋 sections−−−−−−→ S.

Goal: Generalize this approach where 𝑋 is replaced by an ∞-category C and S is replaced by Cat∞. That
is, we want to relate Fun(C,Cat∞) with some subcategory of Cat∞/C.

If 𝑓 : E→ C, what requirement do we need to make sense of an associated functor

𝐹 : C→ Cat∞

𝑋 ↦→ 𝑓 −1 (𝑋).

That is, how can we coherently choose our fibers.
Given 𝑋 ∈ C, we could take a pullback in Cat∞:

𝑓 −1 (𝑋) E

Δ0 C.

⌟

𝑋

If we choose sSetJoyal as our model, we would need E → C to be an inner fibration (RLP wrto inner
horns) to get the pullback 𝑓 −1 (𝑋) to be a quasi-category. If we instead say “pullback in quasi-categories,”
this requirement goes away.

Given 𝑓 : E→ C and 𝑋 → 𝑌 in C, how can we define 𝑓 −1 (𝑋) → 𝑓 −1 (𝑌 ) in Cat∞?
Need: If 𝜙 : 𝑋 → 𝑌 in C and 𝐸𝑋 ∈ E such that 𝑓 (𝐸𝑋) = 𝑋, then there exists some 𝐸𝑌 ∈ E and

𝜙! : 𝐸𝑋 → 𝐸𝑌 in E so that 𝑓 (𝜙!) = 𝜙, and that is universal in the following sense: for all 𝑍 ∈ C and for all
𝜓 : 𝑋 → 𝑍 in C for all 𝜓 : 𝐸𝑋 → 𝐸𝑍 in E where 𝑓 (𝜓) = 𝜓, if there exists 𝛾 : 𝑌 → 𝑍 then there exists a unique
map 𝛾 : 𝐸𝑌 → 𝐸𝑍 in E so that 𝑓 (𝛾) = 𝛾 and 𝛾 ◦ 𝜙! = 𝜓.

We say that 𝜙! : 𝐸𝑋 → 𝐸𝑌 is a cocartesian lift of 𝜙.

5Note that 𝑁 (Set≃ ) = 𝑁 (Set)≃.
6By Fun(𝑋, S) we might mean Fun(Sing(𝑋) , 𝑁Δ (Kan) ).
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Definition 3.6.1. We say that 𝑓 : E→ C is a cocartesian fibration if for all 𝐸𝑋 ∈ E, for all 𝜙 : 𝑋 → 𝑌 with
𝑓 (𝐸𝑋) = 𝑋, there exists a cocartesian lift of 𝜙.

Two cocartesian lifts over the same map are equivalent.
Given 𝑓 : E → C, 𝑋 ∈ C, 𝜙 : 𝑋 → 𝑌 in C, we say 𝜙! : 𝐸𝑋 → 𝐸𝑌 is a cocartesian lift if the following is a

pullback diagram in spaces:

HomE (𝐸𝑌 , 𝐸𝑍 ) HomC (𝐸𝑋, 𝐸𝑍 )

HomC (𝑌, 𝑍) HomC (𝑋, 𝑍),

(𝜙! )∗

𝑓
⌟

𝑓

𝜙∗

for any 𝑍 ∈ C. In particular, taking maps from Δ0 to the top right and bottom left picks out 𝜓 and 𝛾,
respectively, so that 𝛾 ◦ 𝜙 = 𝜓, and the universal property of the pullback says that there exists 𝛾 : 𝐸𝑌 → 𝐸𝑍
so that 𝛾𝜙! = 𝜓 and 𝑓 (𝛾) = 𝛾.

Definition 3.6.2. We define coCart(C) ⊆ Cat∞/C to be the subcategory of cocartesian fibrations E → C,
with morphisms

E E′

C,

𝐺

𝑓 𝑓 ′

so that 𝐺 sends 𝑓 -cocartesian lifts to 𝑓 ′-cocartesian lifts.

In this case, straightening defines a functor

St : coCart(C) → Fun(C,Cat∞),

sending 𝑓 : E→ C to the functor

C→ Cat∞

𝑋 ↦→ 𝑓 −1 (𝑋)

(𝑋
𝜙
−→ 𝑌 ) ↦→

[
𝑓 −1 (𝑋)

𝜙!−−→ 𝑓 −1 (𝑌 )
]
.

Example 3.6.3. Let 𝑓 : 𝑋 → 𝑌 in S. All lifts are cocartesian lifts. We say that a left fibration is a
cocartesian fibration where every lift is cocartesian.

Example 3.6.4. Suppose C is an ordinary category. Then we can define a new category whose objects are
𝑓 : 𝑋 → 𝑌 in C, and whose morphisms are

𝑋 𝑌

𝑋 ′ 𝑌 ′.

𝑓

𝑣𝑢

𝑓 ′

This defines what we call the twisted arrow category Tw(C). There is a natural functor

Tw(C) Ev−−→ Cop × C

(𝑋
𝑓
−→ 𝑌 ) ↦→ (𝑋,𝑌 ).

This is a left fibration, by composition. Straightening this, we get

St(Ev) : Cop × C→ Set

(𝑋,𝑌 ) ↦→ Ev−1 (𝑋,𝑌 ) = HomC (𝑋,𝑌 ).
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Example 3.6.5. If C is an ∞-category, we can define a twisted arrow category in a similar way

Tw(C) : Δop → Set

[𝑛] ↦→ HomsSet (Δ2𝑛+1,C),

where the 𝑛-simplices of Tw(C) should be thought of as

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑛

𝑌0 𝑌1 𝑌2 · · · 𝑌𝑛.

We can define

ℓ : Tw(C) → Cop

𝑟 : Tw(C) → C,

by precomposition with Δ𝑛 ↩−→ Δ2𝑛+1. These assemble to give

Tw(C) Ev−−→ Cop × C,

and we have HomC (𝑋,𝑌 ) = Ev−1 (𝑋,𝑌 ) ∈ S. This evaluation map is a left fibration, left fibrations are
preserved under pullback, and left fibrations over Δ0 are Kan complexes. Therefore Ev−1 (𝑋) is a space.

Example 3.6.6. Let 𝑋 ∈ C. Then we can take

ℓ−1 (𝑋) Tw(C)

Δ0 Cop.

⌟
ℓ

𝑋

We define C𝑋/ := ℓ
−1 (𝑋), and 𝑟−1 (𝑌 ) := C/𝑌 .

Theorem 3.6.7. (Straightening/unstraightening) If C is an ∞-category, we can define its unstraightening as

Unst : Fun(C,Cat∞) → coCart(C)

𝐹 ↦→ colim

(
Tw(C) Ev−−→ Cop × C

C/·×𝐹−−−−−→ Cat∞

)
.
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That composite sends

Tw(C) Ev−−→ Cop × C
C/·×𝐹−−−−−→ Cat∞

(𝑋
𝑓
−→ 𝑌 ) ↦→ C𝑋/ × 𝐹 (𝑌 ).

This forms an equivalence with St.

There is an equivalence

St : LFib(C) ⇆ Fun(C, S) : Unst.

If C = 𝑋 ∈ S, then coCart(𝑋) = Cat∞/𝑋.
If C = 𝑁 (D), this recovers the usual Grothendieck construction.
If 𝐹 : C→ Cat∞, then

colim 𝐹 = Unst(C) [cocart. edges−1]
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Chapter 4

Higher algebraic structures

4.1 Unstraightening multiplications

Recall S ≃ 𝑁 (sSet) [𝑊−1Kan] the ∞-category of spaces. When we say 𝑋 → 𝑌 is a map in S we mean that 𝑋 → 𝑌

is a map in Ho(sSet) not that 𝑋 → 𝑌 is any map in sSet.

Example 4.1.1. If we have 𝑋 → 𝑌 in S, then 𝑋 → 𝑌 is a left fibration. If 𝑋 and 𝑌 are in Kan and 𝑋 → 𝑌

this does not imply that 𝑋 → 𝑌 must be a left fibration. What is true is that if 𝑋 → 𝑌 is a Kan fibration,
then 𝑋 → 𝑌 is a left fibration.

We have Cat∞ ≃ 𝑁 (sSet) [𝑊−1Joyal], so 𝑓 : C→ D in Cat∞ means

𝑓 −1 (𝑋) C

Δ0 D.

⌟

𝑋

So we always want it to be a fibration.
That is, a map 𝑓 : C→ D in Cat∞ is not the same as C→ D of quasi-categories in sSet.
In Cat∞, C→ D is a cocartesian fibration if there exists a cocartesian lift on any fiber.
If C,D are quasi-categories in sSetJoyal, then 𝑓 : C→ D is a cocartesian fibration if 𝑓 is an inner fibration

(RLP inner horns) AND there is a cocartesian lift of any fiber. The inner fibration condition guarantees
that the fibers are also infinity categories.

Straightening definition last time was wrong. Last time, we had

Unst : Fun(C,Cat∞)
∼−→ coCart(C)

𝐹 ↦→
(
E

Unst(𝐹 )
−−−−−−−→ C

)
.

is an equivalence of categories, where

E = colim

(
Tw(C)op → C × Cop

𝐹×C•/−−−−−→ Cat∞

)
.

Example 4.1.2. Take C = ∗. Then Fun(∗,Cat∞) = Cat∞. We have that coCart(∗) = Cat∞, and that
Tw(∗) = ∗op = ∗. The composite sends

Tw(∗)op → ∗ × ∗op → Cat∞

∗ ↦→ (∗, ∗) ↦→ ∗𝐴 × ∗ = 𝐴.
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Example 4.1.3. Take C = 1 = 0→ 1. A functor 𝐹 : 1→ Cat∞ is exactly a functor 𝐹 : A→ D in Cat∞. We
see that Tw(1) has three objects, being 0 = 0, 0→ 1 and 1 = 1. The identity ones both map to 0→ 1 so it
is a span-op category. When we op Tw(1)op we get the span category, so a colimit becomes a pushout. We
see that 10/ = 1 and 11/ = ∗. Then

E = colim

©­­­­­­­­«

A × 11/ A × 10/

B × 11/

id×(0→1)

𝐹×id

ª®®®®®®®®¬
= colim

©­­­­­­«
A A × 1

B

id×1 ª®®®®®®¬
Then E is a cocartesian fibration over 1, whose fiber over 0 is A, whose fiber over 1 is B, and with maps
𝐹 (𝐴) → 𝐵 over 0→ 1.

Goal: Redefine a symmetric monoidal category (C, ⊗, 𝐼) as a cocartesian fibration C⊗ → Fin∗ as certain
“pseudo”functors Fin∗ → Cat. We could take Fin∗ → Cat sending ⟨𝑛⟩ to C×𝑛.

Q: Given a psuedofunctor 𝐹 : Fin∗ → Cat, when is it defining a symmetric monoidal category?
We would need 𝐹 (⟨𝑛⟩) � 𝐹 (⟨1⟩)×𝑛 with Segal’s condition 𝐹 (⟨0⟩) = 0.

Theorem 4.1.4. Symmetric monoidal categories are pseudofunctors Fin∗ → Cat with the Segal condition.

4.2 Algebras

Last time we defined a symmetric monoidal infinity category to be a cocartesian fibration over Fin∗ with a
Segal condition. Here C = 𝑓 −1 (⟨1⟩). We got this by straightening 𝑁 (Fin∗) → Cat∞, with ⟨𝑛⟩ ↦→ C⊗𝑛.

Suppose we had a natural transformation 𝜂 between functors

C,D : 𝑁 (Fin∗) → Cat∞.

This corresponds to a map C⊗ → D⊗ over Fin∗ sending 𝑝-cocartesian lifts to 𝑞-cocartesian lifts:

C⊗ D⊗

𝑁 (Fin∗).
𝑝 𝑞

Think about this as 𝐹 (𝑋) ⊗ 𝐹 (𝑌 ) ∼−→ 𝐹 (𝑋 ⊗ 𝑌 ).
Now suppose we have 𝐹⊗ : C⊗ → D⊗ between symmetric monoidal ∞-categories. Then we know the fiber

over ⟨1⟩ must be sent to the fiber over ⟨1⟩. Then we get 𝐹⊗⟨𝑛⟩ : C
⊗
⟨𝑛⟩ → D⊗⟨𝑛⟩ for all 𝑛.

Denote 𝐹 = 𝐹⊗⟨1⟩ . Then 𝐹
⊗
⟨𝑛⟩ ≃ 𝐹

×𝑛.

Let 𝜌𝑖
!
: ⟨𝑛⟩ → ⟨1⟩ send everything to 0 except 𝑖 to 1.

C⊗⟨2⟩ D⊗⟨2⟩

C × C D ×D.

𝐹⊗⟨2⟩

(𝜌1! ,𝜌2! ) (𝜌1! ,𝜌2! )

𝐹×𝐹
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𝐹 (𝜌1! ) ≃ 𝜌
1
! and 𝐹 (𝜌2! ) ≃ 𝜌

2
! . For all 𝑖 we need that 𝐹 (𝜌𝑖

!
) is a 𝑞-cocartesian lift of 𝜌𝑖. This means that

for all 𝑛, 𝐹⊗⟨𝑛⟩ (𝑋1, . . . , 𝑋𝑛) ≃ (𝐹 (𝑋1), . . . , 𝐹 (𝑋𝑛)).

Definition 4.2.1. A map 𝛼 : ⟨𝑛⟩ → ⟨𝑘⟩ in Fin∗ is inert if 𝛼−1 (𝑖) is precisely a singleton for 1 ≤ 𝑖 ≤ 𝑛.

Fact 4.2.2. Inert morphisms are generated by 𝜌𝑖 and 𝜏 (here 𝜏 is the swap of 1 and 2 on ⟨2⟩).

Let 𝐹⊗ : C⊗ → D⊗ that sends 𝑝-cocartesian lifts of inert maps to 𝑞-cocartesian lifts. We claim this already
gives a lax monoidal structure. Consider 𝑚 : ⟨2⟩ → ⟨1⟩ the multiplication, and consider (𝑋,𝑌 ) ∈ C×2. There
is a map 𝑚! : C × C→ C sending (𝑋,𝑌 ) ↦→ 𝑋 ⊗ 𝑌 .

𝐹 (𝑋) ⊗ 𝐹 (𝑌 )

(𝐹 (𝑋), 𝐹 (𝑌 )) 𝐹 (𝑋 ⊗ 𝑌 ).

𝑚!

𝐹 (𝑚! )

Note we’re not saying that 𝐹 (𝑚!) is a cocartesian lift, we’re saying that 𝑚! is. If 𝐹 (𝑚!) was a cocartesian
lift, then this would give 𝐹 (𝑋) ⊗ 𝐹 (𝑌 ) → 𝐹 (𝑋 ⊗ 𝑌 ) is an equivalence.

Exercise 4.2.3. Show that 𝜄 : ⟨0⟩ → ⟨1⟩ induces 𝐼D → 𝐹 (𝐼C).

Definition 4.2.4. For C⊗ and D⊗ symmetric monoidal ∞-categories, a lax symmetric monoidal functor
𝐹⊗ : C⊗ → D⊗ is a functor that sends lifts of 𝑝-cocartesian inert maps in Fin∗ to 𝑞-cocartesian lifts.

Definition 4.2.5. We say 𝐹⊗ is strong symmetric monoidal if it sends all 𝑝-cocartesian lifts to 𝑞-cocartesian
lifts.

We can define

Fun𝑁 (Fin∗ ) (C⊗ ,D⊗) Fun(C⊗ ,D⊗)

Δ0 Fun(C⊗ ,Fin∗).

⌟
𝑞∗

𝑝

Define Fun⊗,lax (C⊗ ,D⊗) to be the full subcategory of lax monoidal functors, and just Fun⊗ (C⊗ ,D⊗) the full
subcategory of strong monoidal functors.

Example 4.2.6. Commutative algebras. We have that Δ0 is a symmetric monoidal ∞-category with trivial
structure, then we have

𝑁 (Fin∗) → Cat∞

sending everything to Δ0. The associated cocartesian fibration is 𝑁 (Fin∗) → 𝑁 (Fin∗).

We define Alg∞ (C) to be Fun⊗,lax (𝑁 (Fin∗),C). That is,

𝑁 (Fin∗) C⊗

𝑁 (Fin∗)

𝐴⊗

𝑝

That is, 𝐴⊗ is a section of 𝑝 that sends inert maps in Fin∗ to 𝑝-cocartesian lifts. We have that 𝐴⊗ (⟨1⟩) ∈
C⊗⟨1⟩ = C, and 𝐴 ⊗ 𝐴→ 𝐴. We have that 𝐴⊗ (⟨0⟩) = 𝐼.

Q: Can we localize a symmetric monoidal category in such a way that it preserves the symmetric monoidal
structure?
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Definition 4.2.7. (HA 4.1.7.4) Given C⊗ a symmetric monoidal ∞-category, let 𝑊 ⊆ C a collection of edges.
Assume 𝑊 is closed under ⊗ (meaning that if 𝑌 → 𝑌 ′ is in 𝑊 , and 𝑋 is arbitrary, then 𝑋 ⊗ 𝑌 → 𝑋 ⊗ 𝑌 ′
and 𝑌 ⊗ 𝑋 → 𝑌 ′ ⊗ 𝑋 are in 𝑊 as well). The symmetric monoidal localization of C⊗ with 𝑊 is a symmetric
monoidal ∞-category C[𝑊−1]⊗ together with a strong symmetric monoidal functor

ℓ : C⊗ → C[𝑊−1]⊗

with the following universal property: for any symmetric monoidal ∞-category D⊗, we get an equivalence of
∞-categories:

Fun⊗ (C[𝑊−1]⊗ ,D⊗) ∼−→ Fun⊗𝑊 (C
⊗ ,D⊗),

where Fun𝑊 (−) means sending 𝑊 to equivalences.

This always exists. We have that C[𝑊−1] ⟨1⟩ ≃ C[𝑊−1]. In terms of cocartesian fibrations it is maybe(?)
some kind of Kan extension

C Fin∗

C[𝑊−1]

?

Definition 4.2.8. Let (𝑀, ⊗, 𝐼) be a symm mon model category (with functorial cofibrant replacement).
Suppose 𝐼 is cofibrant. Then the Dwyer-Kan localization 𝑁 (𝑀) [𝑊−1] can be given a symmetric monoidal
∞-structure as follows:

• Take the cofibrant objects 𝑀𝑐

• Take the category of operators 𝑀⊗𝑐 as an ordinary category (objects are pairs ⟨𝑛⟩ , 𝑐1, . . . , 𝑐𝑛) and
morphisms are ⊗𝑖𝑐𝑖 → 𝑐′

𝑗
over Fin∗

• 𝑁 (𝑀⊗𝑐 ) is a symmetric monoidal ∞-category, with class 𝑊 of edges in 𝑁 (𝑀𝑐)

• Recall that 𝑋 ⊗ − : 𝑀𝑐 → 𝑀𝑐 preserves weak equivalences between cofibrant objects, under the
hypothesis that 𝑋 is cofibrant.

• Thus 𝑁 (𝑀⊗𝑐 ) → 𝑁 (𝑀𝑐) [𝑊−1]⊗ is called the symmetric monoidal Dwyer-Kan localization.

This gives a sym mon structure on the ∞-category 𝑁 (𝑀) [𝑊−1] ≃ 𝑁 (𝑀𝑐) [𝑊−1].

This shows that the derived tensor product ⊗ of a monoidal model category 𝑀 endows 𝑁 (𝑀) [𝑊−1] with
a monoidal structure.

Example 4.2.9. Spaces S have a symmetric monoidal ∞-category structure, since we can view them as
𝑁 (sSet) [𝑊−1Kan] with the cartesian product. Here Alg𝐸∞ (S) are equivalent to 𝐸∞-algebras in spaces.

Example 4.2.10. We have that Cat∞ ≃ 𝑁 (sSet) [𝑊−1Joyal] with the cartesian product. Then Alg𝐸∞ (Cat∞) are
symmetric monoidal ∞-categories. This is exactly because Alg𝐸∞ (Cat∞) = Fun⊗,lax (𝑁 (Fin∗),Cat∞) which
guarantees the Segal condition.

Example 4.2.11. If 𝑅 is a commutative ring, then 𝐷 (𝑅) ≃ Ch𝑅 [𝑊−1proj] is a symmetric monoidal ∞-category.
The injective model structure does not give you a monoidal model category.

We also have the connective case with two models

𝐷≥0 (𝑅) ≃ 𝑁 (𝑠Mod𝑅) [𝑊−1] ≃ 𝑁 (Ch≥0𝑅 ) [𝑊
−1] .

Every symmetric monoidal ∞-category C⊗ which is presentable and for which ⊗ preserves colimits is the
symmetric monoidal DK localization of a combinatorial monoidal model category (Lurie-Sagave).
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4.3 Stable ∞-categories
Universal property for S (spaces). Given 𝐾 ∈ sSet, there is a Yoneda embedding

𝐾 ↩−→ Fun(𝐾op, S) =: P(𝐾),

which is the adjoint of “internal hom”1

𝐾op × 𝐾 → S.

Given C an ∞-category, we can call P(C) the universal cocompletion of C. That is, for all D cocomplete,
there is an equivalence

Fun𝐿 (P(C),D) ∼−→ Fun(C,D),

where 𝐿 denotes colimit-preserving functors.2

If we choose C = Δ0, we get

Fun𝐿 (S,D) = Fun(Δ0,D) = D.

Hence we can think of S as the “free cocompletion of Δ0.” Just as a set can be viewed as a union of its
points, we can think of any cocomplete ∞-category as gluing its paths together.

Definition 4.3.1. An ∞-category is pointed if it has an object with is both initial and terminal. That is,
some 0 ∈ C so that

HomC (0, 𝑋) ≃ ∗ ≃ HomC (𝑋, 0)

for any 𝑋 ∈ C.

Example 4.3.2. If C is an ∞-category and ∗ ∈ C is a terminal object, we can define

C∗ := C∗/.

This will be pointed and we will have an adjunction

(−)+ : C⇆ C∗.

For example, we have

S⇆ S∗ = 𝑁 (sSet∗) [𝑊−1Kan] .

If C is a pointed presentable stable ∞-category, then

Fun𝐿 (S∗,C) ≃ C.

Here S∗ is the free presentable pointed ∞-category generated by ∗+ = 𝑆0.
Now we introduce stable ∞-categories, which behave like 𝐷 (𝑅) ≃ 𝑁 (Ch𝑅) [𝑊−1qiso].

Definition 4.3.3. Let C be a pointed ∞-category. A triangle in C is a square of the form

𝑋 𝑌

0 𝑍.

𝑓

𝑔

This is specified by a functor 𝑁 (Δ1 × Δ1) → C sending the bottom corner to 0.

1𝐾 isn’t necessarily an ∞-category, so it doesn’t make sense to have internal hom, but this is the straightening of Tw(𝐾 ) →
𝐾op × 𝐾 which is always well-defined.

2For presentable ∞-categories, being a left adjoint is equivalent to preserving colimits, hence the superscript “𝐿”
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We say a triangle is exact if it is a pullback, and coexact if it is a pushout.

Example 4.3.4. If 𝑓 : 𝐸 → 𝑋 in S∗, then an exact triangle looks like

𝑓 −1 (𝑥) 𝐸

∗ 𝑋.

⌟
𝑓

Example 4.3.5. We have loops and suspension in S∗ given by the (homotopy) pullback and pushout squares

Ω𝑋 ∗

∗ 𝑋

⌟
𝑋 ∗

∗ Σ𝑋
⌜

Our goal is to define Σ : C→ C and Ω : C→ C for a general pointed ∞-category.

Definition 4.3.6. For C finitely bicomplete, we define CΣ ⊆ Fun(Δ1 × Δ1,C) to be the full subcategory
spanned by diagrams of the form

𝑋 ∗

∗ Σ𝑋
⌜

Note that maps between such diagrams are the same as maps 𝑋 → 𝑌 . Thus there is an equivalence

CΣ ∼−→ C,

and similarly CΩ ∼−→ C.

We have

Γ Fun(C,CΣ)

∗ Fun(C,C).

∼
⌟

≃

id

Thus there is a unique section 𝑠Σ : C→ CΣ. So now we can define Σ : C→ C to be

Σ : C
𝑠Σ−−→ CΣ ∼−→ C.

Analogously we can define Ω.

Theorem 4.3.7. If C is a pointed and finitely bicomplete category, we have an adjunction

Σ : C⇆ C : Ω.

In particular, for 𝑋,𝑌 ∈ C we have

HomC (Σ𝑋,𝑌 ) ≃ ΩHomC (𝑋,𝑌 ).

This is because maps from Σ𝑋 → 𝑌 are in bijection with

ΩHom(𝑋,𝑌 ) Hom(0, 𝑌 )

Hom(0, 𝑌 ) Hom(Σ𝑋,𝑌 ).
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This tells us that

𝜋0 HomC (Σ𝑋,𝑌 ) = 𝜋1 HomC (𝑋,𝑌 ),

which is a group. Similarly we get that 𝜋0 Hom(Σ2𝑋,𝑌 ) is an abelian group.

Definition 4.3.8. Given 𝑓 : 𝑋 → 𝑌 in C, we can define the fiber and cofiber as

fib( 𝑓 ) 𝑋

∗ 𝑌

⌟
𝑋 𝑌

∗ cof ( 𝑓 )
⌜

Definition 4.3.9. An ∞-category is stable if it is

• pointed

• finitely bicomplete

• triangles are exact if and only if they are coexact.

This last condition is equivalent to any of the following

• a square is a pullback iff it is a pushout

• Σ : C⇆ C : Ω is an equivalence

• cof : Fun(Δ1,C) → Fun(Δ1,C) : cof is an equivalence.

Let C be a stable ∞-category. Then

𝜋0 Hom(𝑋,𝑌 ) � 𝜋0 (Hom(Σ𝑋 ′, 𝑌 )) � 𝜋0 Hom(Σ2𝑋 ′′, 𝑌 )

for some 𝑋, 𝑋 ′′. Thus Ho(C) is an additive category.
We furthermore have that Ho(C) is triangulated. Given 𝑓 : 𝑋 → 𝑌 in C,

𝑋 0

𝑌 cof ( 𝑓 )

0 Σ𝑋

𝑓
⌜

⌜

Example 4.3.10. C = 𝐷 (𝑅). Show this has all the properties mentioned above.

Given C pointed, we want it to be stable. We can force Ω : C→ C to be an equivalence by considering

Sp(C) := lim
(
· · · Ω−→ C

Ω−→ C
)
.

Historically, we tried to invert Σ (Freudenthal theorem).
We could take Spnaive, whose objects are finite pointed spaces, and morphisms are stable maps [𝑋,𝑌 ].

The problem is that Σ is not an equivalence on this category.
We could instead take SpWh, where objects are pairs (𝑋, 𝑛) with 𝑋 a pointed finite CW complex, and

Hom((𝑋, 𝑛), (𝑌, 𝑚)) := colim𝑘

[
Σ𝑛+𝑘𝑋, Σ𝑚+𝑘𝑌

]
.
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Then we have

Spnaive ↩−→ SpWh

𝑋 ↦→ (𝑋, 0).

The suspension takes the form

Σ : SpWh → SpWh

(𝑋, 𝑛) ↦→ (𝑋, 𝑛 + 1).

Thus

SpWh = colim
(
Sfin∗

Σ−→ Sfin∗
Σ−→ · · ·

)
.

and we have that

Sp(S∗) = Ind(SpWh)

= Ind colim
(
Sfin∗

Σ−→ Sfin∗
Σ−→ · · ·

)
= lim

(
Ind(Sfin∗ )

Ω← Ind(Sfin∗ )
Ω← · · ·

)
= lim

(
S∗

Ω← S∗
Ω← · · ·

)
.

Note that colim
(
S∗

Σ−→ S∗
Σ−→ · · ·

)
won’t work.

Definition 4.3.11. If C is a pointed finitely bicomplete ∞-category, a prespectrum in C is defined to be a
functor

𝑁 (Z × Z) → C,

where 𝑋𝑖, 𝑗 = 0 for 𝑖 ≠ 𝑗 . Note that we get induced structure maps 𝛼𝑛 : Σ𝑋𝑛 → 𝑋𝑛+1 and 𝛽𝑛 : 𝑋𝑛 → Ω𝑋𝑛+1.

A prespectrum is called a spectrum in C if 𝛽𝑛’s are equivalences for all 𝑛. We define Sp(C) to be the full
subcategory of spectra.

Let

Sp(C) ≃ lim
(
C

Ω← C
Ω← · · ·

)
.

If C = S∗, we will write Sp = Sp(S∗) as the ∞-category of spectra. We define Ho(Sp) to be the stable
homotopy category.

There is a functor

Σ̃∞ : C→ PSp(C),

given by sending 𝑋 to the prespectrum whose (𝑖, 𝑖)th entry is Σ𝑖𝑋.
Then there is a functor for C presentable

PSp(C) → Sp(C)

sending a prespectrum 𝑋 to 𝑋, defined by

𝑋𝑛 := colim(𝑋𝑛
𝛽𝑛−−→ Ω𝑋𝑛+1 → · · · ).

Then 𝑋𝑛 ≃ colim𝑘 Ω
𝑘𝑋𝑛+𝑘 ≃ colim𝑘 Ω

𝑘+1𝑋𝑛+𝑘+1. As Ω is a right adjoint it commutes with filtered colimits
(using presentable here), so this can be rewritten as

Ω colim𝑘 Ω
𝑘𝑋𝑛+𝑘+1 ≃ Ω𝑋𝑛+1.
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4.4 Multiplicative structure in spectra

Last time we had a universal property for C
Σ∞−−→ Sp(C), where C was a pointed presentable ∞-category. We

had that

Fun𝐿 (Sp(C),D) ∼−→ Fun(C,D)

for any stable presentable ∞-category D.
We denote by Σ∞𝑆0 =: S ∈ Sp = Sp(S∗), and recall that

Fun𝐿 (Sp,D) ≃ Fun𝐿 (S∗,D) ≃ D.

So we call Sp the free stable ∞-category generated by ∞.
Q: Can we give a symmetric monoidal structure on Sp analogous to ⊗Z in Ab?
Spanier-Whitehead category: Recall Freudenthal says that if 𝑋 and 𝑌 are finite CW complexes, then

the sequence [Σ𝑘𝑋, Σ𝑘𝑌 ] stabilizes in 𝑘. So Spnaive has objects given by finite CW complexes, and homs
given by stable maps.

To invert Σ, we introduced SpWh, where objects are (𝑋, 𝑛) and homs (𝑋, 𝑛) → (𝑌, 𝑚) are

colim𝑘

[
Σ𝑛+𝑘𝑋, Σ𝑚+𝑘𝑌

]
.

Formally in ∞-categories, we have that

SpWh = colim
(
Spfin∗

Σ−→ Spfin∗
Σ−→ · · ·

)
.

Then Sp ≃ Ind(SpWh).
Why finiteness? By adjunction we can see

Hom((𝑋, 0), (𝑌, 0)) = colim𝑘

[
Σ𝑘𝑋, Σ𝑘𝑌

]
= colim𝑘

[
𝑋,Ω𝑘Σ𝑘𝑌

]
= [𝑋, colim𝑘 Ω

𝑘Σ𝑘𝑌 ],

which holds if 𝑋 is compact (e.g. finite CW). Thus if {−,−} is a hom for spectra, we would have

{𝑋,𝑌 } = {𝑋,Ω𝑛Σ𝑛𝑌 } .

What is the monoidal structure on SpWh? Recall in S∗ we have a smash product, so we could define

(𝑋, 𝑛) ∧ (𝑌, 𝑚) := (𝑋 ∧ 𝑌, 𝑛 + 𝑚).

The unit is (𝑆0, 0). This smash product is difficult to translate to spectra however.

Definition 4.4.1. For all 𝑋 ∈ Sp, we define

𝜋𝑛 (𝑋) = HomHo(Sp) (Σ𝑛S, 𝑋) =: [Σ𝑛S, 𝑋] ∈ Ab.

In particular if 𝑋 is a suspension spectrum, we get

𝜋𝑘 (Σ∞𝑋) = [Σ𝑛S, Σ∞𝑋]
= colim𝑘

[
Σ𝑛+𝑘𝑆0, Σ𝑘𝑋

]
= colim𝑘 𝜋𝑛+𝑘 (𝑋)
= 𝜋𝑠𝑛 (𝑋).
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This is the stable homotopy group of 𝑋. It gives us a functor

Sp→ 𝑁 (Ab)
𝑋 ↦→ 𝜋𝑛 (𝑋).

This factors through

Sp
Ω∞−−→ S∗

𝜋𝑛−−→ 𝑁 (Ab)

for 𝑛 ≥ 2.
(HA 1.4.3.8) The collection of these functors reflect equivalences. That is, if 𝜋𝑛 (𝑋)

∼−→ 𝜋𝑛 (𝑌 ) for all 𝑛,

then 𝑋
∼−→ 𝑌 in Sp.

Definition 4.4.2. We define Sp≥0 to be the ∞-category of connective spectra, the full subcategory of Sp on
those 𝑋 for which 𝜋𝑛 (𝑋) = 0 for 𝑛 < 0.

Example 4.4.3. For all 𝑋 ∈ S∗, we have that Σ∞𝑋 ∈ Sp≥0.

We get an adjunction

Sp≥0 ⇆ Sp : 𝜏≥0,

where the right adjoint to the inclusion is the connective cover.
If 𝑋 ∈ S∗ and 𝑌 ∈ Sp≥0, we have that

[Σ∞𝑋,𝑌 ] ≃ [𝑋,𝑌0] .

That is, Ω∞𝑌 ≃ 𝑌0.
If 𝑌 ∈ Sp≥0 then Ω∞𝑌 = 𝑌0 is an infinite loop space. That is, for all 𝑘 ≥ 0, we have that 𝑌0 ≃ Ω𝑘𝑌𝑘 . May

recognition tells us that

Alggplike
𝐸∞

(S∗) ≃ Sp≥0.

If C is a symmetric monoidal category, then CAlg(C) is also a sym mon cat with some underlying tensor
product.

For example if 𝑋,𝑌 are 𝐸∞-algebras which are grouplike in spaces, then 𝑋 ∧𝑌 is an 𝐸∞-algebra in S∗. It
is not true that if 𝑋 and 𝑌 are infinite loop spaces then 𝑋 ∧ 𝑌 is an infinite loop space.

Example 4.4.4. Let 𝐺 be an abelian group, then 𝐾 (𝐺, 0) is an ∞-loop space, with 𝐾 (𝐺, 0) ≃ Ω𝑛𝐾 (𝐺, 𝑛).
Let 𝐻𝐺 ∈ Sp≥0 be its corresponding spectrum, called the Eilenberg-Maclane spectrum of 𝐺. This gives a
functor

𝑁 (Ab) → Sp≥0

𝐺 ↦→ 𝐻𝐺.

We want a monoidal structure on Sp and Sp≥0 for this functor to be compatible with ⊗Z in Ab.

Ideas for monoidal structure on Sp:

• On SpWh we had (𝑋, 𝑛) ∧ (𝑌, 𝑚) = (𝑋 ∧ 𝑌, 𝑛 + 𝑚)

• Alg𝐸∞ (S∗)

• Ab, ⊗Z
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Boardman: We could define (𝑋 ∧ 𝑌 )𝑛 = 𝑋𝑎 (𝑛) ∧ 𝑌𝑏 (𝑛) where 𝑎(𝑛) + 𝑏(𝑛) = 𝑛, and then we could “Ω-
spectrify.” There are lots of choices for 𝑎(𝑛) and 𝑏(𝑛).

Adams: We could define

(𝑋 ∧ 𝑌 )𝑛 ≃
∨
𝑒𝑖 𝑗

Σ𝑛−𝑖− 𝑗−𝑑𝑋𝑖 ∧ 𝑌 𝑗 ∧ 𝑀 (𝜏)
/
∼

where 𝑒𝑖 𝑗 is the square on the Z × Z grid with bottom left corner based at (𝑖, 𝑗), open on the top and right
sides, and 𝑀 (𝜏) is the Thom complex of a bundle over 𝑒𝑖 𝑗 .

Indexing on Z × Z is hard because we need to understand choices. Model categories allow us to switch
Z × Z to something that records the choices.

Symmetric spectra: we get a model category SpΣ indexed on finite sets and injective morphisms
(Hovey-Shipley-Smith).

Orthogonal spectra: (or EKMM spectra) SpO, indexed on real inner product spaces. This is by
Mandell-May-Schwede-Shipley.

Theorem 4.4.5. (Lewis, ’91) There is no good 1-category Sp1 that describes Sp with a monoidal structure
so that:

1. Sp1 is symmetric monoidal

2. There is an adjunction Σ∞ : Top∗ ⇆ Sp1 : Ω∞

3. We have that Σ∞𝑆0 is the unit

4. Ω∞ is lax symmetric monoidal

5. For any pointed space, Ω∞Σ∞𝑋 ≃ colim𝑘 Ω
𝑘Σ𝑘𝑋. (that is, these functors are really doing stabilization

of spaces)

For symmetric and orthogonal spectra, it is (3) that messes up — you really need a fibrant replacement.
In EKMM they force (3) to be true, but fail (5).

How to think of 𝑋 ∧ 𝑌 in Sp? We use the universal properties, and try to understand its homotopy
groups. There is a Künneth spectra sequence to compute 𝜋𝑛 (𝑋 ∧ 𝑌 ).

Recall that Fun𝐿 (S,C) ≃ C for C any presentable ∞-category. This should remind us of the statement that
Hom𝑅 (𝑅, 𝑀) = 𝑀 for 𝑀 an 𝑅-module. So we want to think of Fun𝐿 (−,−) as an internal hom somewhere.

Definition 4.4.6. Let Pr𝐿 denote the (very large) ∞-category of presentable ∞-categories, where

HomPr𝐿 (C,D) := Fun𝐿 (C,D).

Fact 4.4.7. This is an internal hom — i.e. if C and D are presentable, then Fun𝐿 (C,D) is presentable.3

We have that

Fun𝐿 (C1,Fun
𝐿 (C2,D)) ≃ Fun𝐵𝐿 (C1 × C2,D),

that is, functors C1 × C2 → D which are colimit preserving in each variable.

So we want some tensor product so that the above is equivalent to Fun𝐿 (C1 ⊗ C2,D).

Fact 4.4.8. If C is closed monoidal, then Cop becomes closed monoidal, but where the tensor product and
hom switch roles.

3If we took Fun instead of Fun𝐿 , the size might increase, but in fact Fun𝐿 (C,D) is presentable in the same size sense that
mC and D are.
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The op of Pr𝐿 is Pr𝑅, where we take limit-preserving functors! So we can check that

C1 ⊗ C2 ≃ Fun𝑅 (Cop
1 ,C2).

By construction S is the monoidal unit, since

S ⊗ C = Fun𝑅 (Sop,C)

=

(
Fun𝐿 (S,Cop)

)op
= (Cop)op

= C.

Here we are using that

Fun𝑅 (−,−) = Fun𝐿 (−op,−op)op.

So we need to create our operator category
(
Pr𝐿

)⊗ ⊆ Cat⊗∞ ≃ 𝑁 (sSet⊗) [𝑊−1Joyal]. We had a cocartesian

fibration Cat⊗∞ → Fin∗, and we’re going to restrict fibers to get the correct thing. The fibers will look like
(C1, . . . ,C𝑛) with C𝑖 presentable, and appropriate morphisms.

So the construction we just did argues that Pr𝐿 ↩−→ Cat∞ is a lax symmetric monoidal functor. Then

Alg𝐸∞ (
𝐿

Pr) = {presentably symmetric monoidal ∞-cats} ,

and S is the initial object. This provides the universal property of spaces with its monoidal structure
S × S→ S, colimit-preserving in each variable, with the point as the unit.

4.5 Brown Representability

We’ve seen that the monoidal product on spectra has two intuitions:

1. Sp≥0 ≃ Alggplike
𝐸∞

(S∗)

2. SpWh = colim
(
Sfin∗

Σ−→ · · ·
)
.4 This had a smash product.

Recall (S,×, ∗) was the initial object in Alg𝐸∞
(
Pr𝐿

)
. We saw we had(

𝐿

Pr, ⊗S
)
→

(
Cat∞,×,Δ0) ,

with tensor C ⊗ D = Fun𝑅 (Cop,D) and internal hom Fun𝐿 (C,D).
We have Catst∞ ⊆ Cat∞ on stable∞-categories and exact functors, and a corresponding Pr𝐿st ⊆ Pr𝐿 spanned

by stable ∞-categories.
The stabilization functor C ↦→ Sp(C) can be viewed as left adjoint to the inclusion

Sp :
𝐿

Pr⇆
𝐿

Pr
st

Tensoring with spectra, we get

C ⊗ Sp = Fun𝑅 (Cop, Sp)
= Fun𝑅 (Cop, lim (S∗ ← · · · ))

= lim
(
Fun𝑅 (Cop, S∗) ← · · ·

)
= lim (C∗ ← · · · )
= Sp(C).

4We have that Sfin∗ is finite CW complexes, not the compact objects in S∗.
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Fact: If C,D stable then Fun𝐿 (C,D) ∈ Pr𝐿st.
We can think of stabilization as “extension of scalars” along S∗

Σ∞−−→ Sp. We have a monoidal adjunction(
𝐿

Pr, ⊗, S
)
⇆

(
𝐿

Pr
st
, ⊗, Sp

)
.

Recall Sp is the initial object in Pr𝐿st. This characterizes spectra together with

Sp × Sp ∧−→ Sp

monoidal and bicolimit preserving so that S is the unit.
We have that Σ∞+ : S→ Sp is strong monoidal, and Ω∞ : Sp→ S is lax monoidal, implying that

Σ∞+ 𝑋 ∧ Σ∞+ 𝑌 ≃ Σ∞+ (𝑋 × 𝑌 ).

We can also shift

Σ∞−𝑘 : S∗ ⇆ Sp : Ω∞−𝑘 .

We call 𝐸𝑘 = Ω∞−𝑘𝐸 .
Formula: For any 𝐸 ∈ Sp, we have that

𝐸 ≃ colim𝑘 Σ
∞−𝑘Ω∞−𝑘𝐸

≃ colim𝑘 Σ
∞−𝑘𝐸𝑘 .

For 𝐸, 𝐹 ∈ Sp

𝐸 ∧ 𝐹 = (colim𝑎 Σ
∞−𝑎𝐸𝑎) ∧

(
colim𝑏 Σ

∞−𝑏𝐹𝑏
)

= colim𝑎,𝑏 Σ
∞−𝑎−𝑏𝐸𝑎 ∧ 𝐹𝑏 .

Example 4.5.1. Recall Mayer-Vietoris: for 𝑈,𝑉 ⊆ 𝑋 open, we have an LES

· · · → 𝐻∗ (𝑈 ∩𝑉) → 𝐻∗ (𝑈) ⊕ 𝐻∗ (𝑉) → 𝐻∗ (𝑈 ∪𝑉) → 𝐻∗−1 (𝑈 ∩𝑉) → · · ·

Recall that 𝐻∗ (𝑋) = 𝐻∗ (𝐶∗ (𝑋)), and by Dold-Kan, we have that 𝐶∗ (𝑋) = 𝜋∗Z[Sing(𝑋)]. Let’s reinterpret
Mayer-Vietoris in this setting. It is saying that there is a homotopy pullback in sSet of the form

ZSing∗ (𝑈 ∩𝑉) ZSing∗𝑈

ZSing∗𝑉 ZSing∗𝑈 ∪𝑉.

⌟

We can view homology as

CWfin
∗ → Kan

𝑋 ↦→ ZSing∗𝑋.

Mayer-Vietoris is the statement that this sends homotopy pushouts to homotopy pullbacks. We can view
this functor as Sfin∗ → S.

Q: Can we do this for all homology theories?

Definition 4.5.2. (Eilenberg-Steenrod) A (reduced) homology theory is
{
𝐸𝑛 : CW

fin
∗ → Ab

}
such that
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1. 𝐸𝑛 invariant under homotopy

2. Excision: 𝐸 𝑖+1 (Σ𝑋) � 𝐸𝑖 (𝑋)

3. Additivity: 𝐸𝑖 (𝑋 ∨ 𝑌 ) � 𝐸𝑖 (𝑋) ⊕ 𝐸𝑖 (𝑌 )

4. Exactness: if 𝑓 : 𝑋 → 𝑌 then

𝐸𝑛 (𝑋) → 𝐸𝑛 (𝑌 ) → 𝐸𝑛 (𝐶 𝑓 ).

Goal: We can view 𝐸∗ : CW∗ → Ab as a certain 𝐸 : Sfin∗ → S.
Axiom (1) allows us to extend 𝐸∗ to Ho(Sfin∗ ). Axiom (2) comes from

𝐶∗ (Σ𝑋) [−1] ≃qiso 𝐶∗ (𝑋).

If and only if ΩZSingΣ𝑋 ≃ ZSing𝑋. So we’re rephrasing that

Ω𝐸 (Σ𝑋) ≃ 𝐸 (𝑋).

Axiom (3) comes from 𝐶∗ (𝑋 ∨𝑌 ) ≃ 𝐶∗ (𝑋) ⊕ 𝐶∗ (𝑌 ). Translating this over to simplicial sets via Dold-Kan, we
get

ZSing𝑋 ∨ 𝑌 ≃ ZSing𝑋 × ZSing𝑌 .

This gives 𝐸 (𝑋 ∨ 𝑌 ) � 𝐸 (𝑋) ⊕ 𝐸 (𝑌 ) and hence 𝜋∗ (𝑋 × 𝑌 ) � 𝜋∗ (𝑋) ⊕ 𝜋∗ (𝑌 ).
(4) Says 𝜋𝑖 (fib( 𝑓 )) = ker(𝜋𝑖 ( 𝑓 )). We have that 𝐶∗ (𝑋) ≃ ker (𝐶∗ (𝑌 ) → 𝐶∗ ( 𝑓 )). Then

ZSing∗ (𝑋)
∼−→ fib (ZSing𝑌 → ZSing𝐶 𝑓 ) .

Hence

𝐸 (𝑋) ≃ fib
(
𝐸 (𝑌 ) → 𝐸 (𝐶 𝑓 )

)
.

That is,

𝑋 𝑌

∗ 𝐶 𝑓
⌜

is sent to

𝐸 (𝑋) 𝐸 (𝑌 )

∗ 𝐸 (𝐶 𝑓 ).

⌟

Definition 4.5.3. Let C be an ∞-category. We say a functor 𝐹 : Sfin∗ → C is

1. excisive if 𝐹 sends pushouts to pullbacks

2. reduced/pointed if 𝐹 (∗) = ∗.

We write Exc∗ (Sfin∗ ,C) ⊆ Fun(Sfin∗ ,C) for excisive and reduced functors.

Given any Sfin∗
𝐸−→ S excisive, we obtain a reduced homology theory

Sfin∗
𝐸−→ S

𝜋𝑠∗−−→ Ab.
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Theorem 4.5.4. There is an equivalence

Sp(C) ≃ Exc∗ (Sfin∗ ,C).

Proof. For some 𝐸 ∈ Exc∗ (Sfin∗ , S), we want to define 𝐸 ∈ Sp. We define 𝐸0 = 𝐸 (𝑆0), and 𝐸1 = 𝐸 (𝑆1), etc.
We can define 𝐸−𝑛 = Ω𝑛𝐸0. This works because

𝑆𝑛 ∗

∗ 𝑆𝑛+1
⌜

is sent to

𝐸 (𝑆𝑛) ∗

∗ 𝐸 (𝑆𝑛+1).

⌟

This gives maps 𝐸 (𝑆𝑛) ∼−→ Ω𝐸 (𝑆𝑛+1).
For the other direction, given 𝐸 ∈ Sp, we can get an excisive functor sending

𝑋 ↦→ 𝑋 ∧ 𝐸0.

We can reinterpet

Ω∞ : Exc∗ (Sfin∗ , S) → S

𝐸 ↦→ 𝐸 (𝑆0).

We can show this is universal. □

Given 𝐸 a spectrum, we have an associated reduced homology theory where 𝐸∗ (𝑋) := 𝜋𝑠∗𝑋 ∧ 𝐸0.
We have that

Σ∞+ 𝑋 ∧ 𝐸 = colim𝑘 Σ
∞−𝑘𝑋 ∧ 𝐸𝑘 .

We have that

Π∗ (Σ∞𝑋 ∧ 𝐸) = 𝜋∗
(
colim𝑘 Σ

∞−𝑘𝑋 ∧ 𝐸𝑘
)

= colim𝑘 𝜋∗
(
Σ∞−𝑘𝑋 ∧ 𝐸𝑘

)
= colim𝑘 𝜋∗+𝑘 (𝑋 ∧ 𝐸𝑘).

This is exactly the definition of 𝜋𝑠∗ (𝑋 ∧ 𝐸0).
Thus

𝐸∗ (𝑋) = 𝜋∗Σ∞𝑋 ∧ 𝐸.

Example 4.5.5. Sphere spectrum S ∈ Sp gives the functor

Sfin∗ → S

𝑋 ↦→ 𝑋 ∧𝑄𝑆0,

where 𝑄(−) = Ω∞Σ∞ (−) = colim𝑘 Ω
𝑘Σ𝑘 (−). Model categorically they think of this as just the natural

inclusion Sfin∗ → S because they derive after including. The homology theory is S̃∗ = 𝜋𝑠∗ (−).

93



Example 4.5.6. We have that 𝐻Z∗ (𝑋) = 𝐻∗ (𝑋;Z). Dold-Thom lets us relate Σ∞𝑋 ∧ 𝐻Z with ZSing(𝑋)
somehow.

Definition 4.5.7. For 𝐹 a spectrum, we can define

𝐸∗ (𝐹) = 𝜋∗ (𝐸 ∧ 𝐹).

Theorem 4.5.8. (Brown representability) If 𝐸∗ (−) : CWfin
∗ → Ab is a reduced homology theory, then there

exists 𝐸 ∈ Sp such that 𝐸𝑛 (𝑋) = 𝜋𝑆𝑛 (𝑋 ∧ 𝐸0).

We looked at 𝜋∗ of 𝐸 ∧−. Taking the same thing for its adjoint, we call 𝐹 (𝐸,−) the right adjoint to 𝐸 ∧−
(this exists because colimit-preserving + presentable). Can take the internal hom to be

𝐹 (𝐸, 𝐸 ′)𝑛 = HomSp(𝐸, Σ𝑛𝐸 ′).

Can define 𝐸𝑛 (𝑋) = [𝑋, 𝐸𝑛] = [Σ∞−𝑛𝑋, 𝐸]. In fact, 𝐹 (𝐸, 𝐸 ′)𝑛 = HomSp (𝐸, Σ𝑛𝐸 ′). This is because

HomSp (𝐸 ∧ S, 𝐹) ≃ HomSp(S, 𝐹 (𝐸, 𝐹)).

Think Hom𝑅 (𝑅, 𝑀) = 𝑀 and HomCh𝑅
(𝑅, 𝑀∗) = 𝑀0. Then HomSp(S, 𝐸) ≃ 𝐸0. This follows from the

loops suspension adjunction:

Hom(Σ∞+ ∗, 𝐸) = Hom(S, 𝐸) = Hom(∗,Ω∞𝐸) = 𝐸0.

For 𝐸 ∈ Sp can define reduced associated cohomology theory for 𝑋 ∈ S∗

𝐸𝑛 (𝑋) = [𝑋, 𝐸𝑛] = 𝜋𝑛𝐹 (Σ∞𝑋, 𝐸).

4.6 Modules in spectra

Monoidal categories which are not symmetric:

• Let C be any category, and look at End(C) with composition and the identity

• 𝐺 any non-abelian monoid, defines a discrete monoidal category.

• Bimodules over any non-commutative ring

Recall a sm ∞-cat was C⊗ → 𝑁 (Fin∗) a cocartesian fibration + Segal condition. This gave 𝑁 (Fin∗) →
Cat∞.

We had 𝜏 : ⟨2⟩ → ⟨2⟩, sending 0 ↦→ 0 and swapping 1,2. This alone gave a symmetric structure on ⊗.
We want to restrict from Fin∗ to throw out 𝜏 and its friends.

There are multiple ways to do this: can view Δop ⊆ Fin∗ sending [𝑛] ↦→ ⟨𝑛⟩. Given 𝛼 : [𝑘] → [𝑛] we send
it to a map

⟨𝑛⟩ → ⟨𝑘⟩

𝑗 ↦→
{
𝑖 ∃𝑖 : 𝑗 ∈ [𝛼(𝑖 − 1) + 1, 𝛼(𝑖)]
∗ else

The composite

Δop → Fin∗ ⊆ Set∗

defines the pointed simplicial set 𝑆1 = Δ1/𝜕Δ1 ∈ sSet∗.
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Definition 4.6.1. A monoidal ∞-cat is a cocart fibration C⊗ → 𝑁 (Δop) with the Segal condition C⊗[𝑛] →(
C⊗[1]

)×𝑛
given by cocartesian lifts of 𝑝𝑖 : [1] → [𝑛], 0 ↦→ 𝑖 − 1, 1 ↦→ 𝑖.

By straightening we get 𝑁 (Δop) → Cat∞ sending [𝑛] → C×𝑛. This is some kind of bar construction.

Definition 4.6.2. 𝛼 ∈ Δ is inert if 𝛼 : [𝑛] → [𝑘] is injective, and im(𝛼) ⊆ [𝑘] is convex. Inert things in Δop

map to inert things in Fin∗ under the map defined above.

Definition 4.6.3. A lax monoidal functor 𝐹⊗ : C⊗ → D⊗ is a functor

C⊗ D⊗

𝑁 (Δop),

𝐹⊗

so that 𝐹⊗ sends cocart lifts of inert to cocart lifts.

A lax monoidal functor 𝐹⊗ is one that sends all cocartesian lifts to cocartesian lifts.
Given C a monoidal ∞-cat, we have that

Alg𝐸1
(C) = Funlax𝐸1

(𝑁 (Δop),C⊗).

Every symmetric monoidal ∞-cat can be viewed as a monoidal ∞-cat via

C̃⊗ C⊗

𝑁 (Δop) 𝑁 (Fin∗).

⌟

We could also straighten then precompose with 𝑁 (Δop) → 𝑁 (Fin∗).
To define modules over a ring, we will use the bar construction [𝑛] ↦→ 𝑁 ⊗ 𝑅⊗𝑛 ⊗ 𝑀.

Definition 4.6.4. Let 𝑝 : C⊗ → 𝑁 (Δop) be a monoidal ∞-cat. An ∞-cat M is said to be left tensored over
C if there is a cocart 𝑞 : E→ 𝑁 (Δop) so that

E C⊗

𝑁 (Δop).
𝑞

𝑓

𝑝

that sends cocart lifts to cocart lifts, such that

E[𝑛]
∼−→ C⊗[𝑛] × E

⊗
{𝑛}

for {𝑛} ⊆ [𝑛], with M = E[0] , and E[1] ≃ C ×M. This is formalizing a functor C ×M→ M compatible with
monoidal structure on C.

Example 4.6.5. C is left tensored over itself. Then E = C̃⊗ with E[𝑛] = C×(𝑛+1) .

Definition 4.6.6. Given M left tensored over C, a left module of M is a map 𝑠 : 𝑁 (Δop) →M⊗ such that

𝑁 (Δ) 𝑠−→M⊗
𝑓
−→ C⊗

is a lax monoidal functor (if 𝛼 : [𝑘] → [𝑛] is inert in Δ then 𝑓 (𝛼) is a cocart fib of C⊗).
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We write LMod(M) ⊆ Fun𝑁 (Δop ) (𝑁 (Δop),M⊗) spanned by left modules. We are interested in when M = C.
In that case

LMod(C) → Alg𝐸1
(C)

(M,A) ↦→ A.

Given 𝐴 ∈ Alg𝐸1
(C), we can define 𝐴-modules as

𝐴Mod(C) LMod(C)

∗ Alg𝐸1
(C).

⌟

𝐴

Can define left 𝐴-modules and (𝐴, 𝐴)-bimodules in a similar way.
Can defgine left modules in a sym mon ∞-cat

LMod𝐸∞ (C) LMod(C) = LMod𝐸1
(C)

Alg𝐸∞ (C) Alg𝐸1
(C).

⌟

Can check that if 𝐴 ∈ Alg𝐸∞ (C) then 𝐴Mod(C) � Mod𝐴(C).

4.7 The Schwede–Shipley Theorem

Goal: generalize the Freyd-Mitchell and Gabriel theeorems.
Given a lax monoidal functor 𝐹 : C→ D between (symmetric) monoidal ∞-cats, it induces a functor

Alg𝐸1
(C) → Alg𝐸1

(D)
𝐴 ↦→ 𝐹 (𝐴).

1-categorically if 𝐴 ∈ C is an associative algebra, then 𝐹 (𝐴) is an associative algebra.
So lax monoidal is the correct notion needed to lift algebras.
∞-categorically, Alg𝐸1

(C) are lax monoidal functors ∗ → C. The statement follows from the fact that
composition of lax monoidal functors is lax monoidal.

If 𝐹 is lax symmetric monoidal, then we can lift

𝐹 : Alg𝐸∞ (C) → Alg𝐸∞ (D).

We also have, for all 𝐴 ∈ Alg𝐸1
(C),

𝐹 : Mod𝐴(C) → Mod𝐹 (𝐴) (D).

Recall

𝑁 (Ab) → Sp

𝐴 ↦→ 𝐻𝐴.

Here

1. (𝐻𝐴)𝑛 = 𝐾 (𝐴, 𝑛) for 𝑛 > 0 and ∗ for 𝑛 < 0

2. 𝐻𝐴 : Sfin∗ → S sends 𝑋 ↦→ 𝑋 ∧ 𝐾 (𝐴, 0)
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3. By Brown representability, 𝐻𝑛 (𝑋, 𝐴) � [𝑋, 𝐾 (𝐴, 𝑛)].

4. 𝜋𝑛 (𝐻𝐴) = 𝐴 if 𝑛 = 0 and 0 otherwise

𝐻𝐴 ∈ Sp≥0 then the associated element in Alggplike
𝐸∞

(S∗) is 𝐴 as a discrete pointed space.
Given 𝐴, 𝐵 ∈ Ab we can compare 𝐻𝐴 ∧ 𝐻𝐵 with 𝐴 ⊗Z 𝐵. These are not the same.

𝜋0𝐻𝐴 ∧ 𝐻𝐵 � 𝐴 ⊗Z 𝐵
𝜋𝑛𝐻𝐴 ∧ 𝐻𝐵 ≠ 0 𝑛 > 0.

If 𝐴 = 𝐵 = F2, then

𝜋∗ (𝐻F2 ∧ 𝐻F2) = F2 [𝜉1, 𝜉2, . . .]

with |𝜉𝑖 | = 2𝑖 − 1. This is the dual Steenrod algebra.
We can get a map 𝐻𝐴 ∧ 𝐻𝐵→ 𝐻 (𝐴 ⊗Z 𝐵) by adjunction

𝜋0 : Sp≥0 ⇆ 𝑁 (Ab) : 𝐻 (−).

Then

𝜋0 (𝐸 ∧ 𝐹) � 𝜋0 (𝐸) ⊗Z 𝜋0 (𝐹).

Thus 𝜋0 is strong symmetric monoidal.

Exercise 4.7.1. If 𝐿 : C ⇆ D : 𝑅 is an adjunction between symmetric monoidal categories, if 𝐿 is strong
monoidal then 𝑅 is lax monoidal.

Warning: 𝜋0 : Sp→ 𝑁 (Ab) is not strong monoidal on the entire category of spectra.

Since the inclusion Sp≥0 ↩−→ Sp is lax symmetric monoidal, we have the composite 𝑁 (Ab) 𝐻−→ Sp≥0 → Sp
is, hence we get

𝑁 (Ring) = Alg𝐸1
(𝑁 (Ab)) → Alg𝐸1

(Sp)
𝑅 ↦→ 𝐻𝑅.

We call Alg𝐸1
(Sp) ring spectra.

Can we compare with Ab = ModZ → 𝐷 (Z)? Yes we can view 𝐷 (Z) as Mod𝐻Z (Sp) in a monoidal way.
Recall that for 𝑅 ∈ CRing, we get 𝐷 (𝑅) = 𝑁 (Ch𝑅) [𝑊−1proj], which is symmetric monoidal ∞-cat with ⊗L

𝑅
.

We want a monoidal structure on Mod𝐻𝑅 (Sp) that mimics the derived tensor product.
Recall 1-categorically that 𝑅 ∈ Alg(C, ⊗, 𝐼) and 𝑀 ∈ Mod𝑅 (C) and 𝑁 ∈ 𝑅Mod(C), we define ⊗𝑅 by the

coequalizer

𝑀 ⊗ 𝑅 ⊗ 𝑁 ⇒ 𝑀 ⊗ 𝑁 → 𝑀 ⊗𝑅 𝑁.

So on spectra we want a relative smash product.
We have to kill off much higher terms

𝑀 ∧𝐻𝑅 𝑁 := colim
(
· · ·⇒ 𝑀 ∧ 𝐻𝑅∧2 ∧ 𝑁 ⇒ 𝑀 ∧ 𝐻𝑅 ∧ 𝑁 ⇒ 𝑀 ∧ 𝑁

)
More generally, given 𝑅 ∈ Alg𝐸1

(C), we can define 𝑀⊗𝑅𝑁 as the colimit of a bar construction. In a 1-category
the higher maps don’t matter and we just recover the coequalizer definition.

We have

𝑁 (Δop) → 𝑁 (Fin∗) → C ↩−→ Cat∞,

[𝑛] ↦→ 𝑀 ⊗ 𝑅⊗𝑛 ⊗ 𝑁.

For C = Sp, this defines (Mod𝑅 (Sp),∧𝑅, 𝑅). We can also define 𝐹𝑅 (𝑀,−) : Mod𝑅 (Sp) → Mod𝑅 (Sp) to
be the right adjoint of

𝑀 ∧𝑅 − : Mod𝑅 → Mod𝑅 .
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Notation 4.7.2. If 𝑅 ∈ Alg𝐸∞ (Sp), and 𝑀, 𝑁 ∈ Mod𝑅 (Sp), we can define

Tor𝑅∗ (𝑀, 𝑁) := 𝜋∗ (𝑀 ∧𝑅 𝑁)
Ext∗𝑅 (𝑀, 𝑁) := 𝜋−∗𝐹𝑅 (𝑀, 𝑁).

We shall see that

𝜋∗ (𝐻𝑀 ∧𝐻𝑅 𝐻𝑁) � Tor𝑅∗ (𝑀, 𝑁),

where 𝑅 ∈ CAlg(Ab) and 𝑀, 𝑁 ∈ Mod𝑅 (Ab).
We have change of algebras: if 𝑓 : 𝐴→ 𝐵 in Alg𝐸∞ (C), we get a monoidal adjunction

− ⊗𝐴 𝐵 : Mod𝐴 ⇆ Mod𝐵 : 𝑓 ∗,

where extension is strong monoidal and restriction 𝑓 ∗ is lax.
In spectra this becomes

− ∧ 𝑅 : ModS = Sp⇆ Mod𝑅 : 𝑈.

Theorem 4.7.3. (Schwede-Shipley) Let C be a stable ∞-category. Then C ≃ Mod𝑅Sp if and only if C is
presentable, and there exists 𝐶 ∈ C compact generator such that if 𝐷 ∈ C and Ext𝑛

C
(𝐶, 𝐷) � 0 then 𝐷 ≃ 0.

Lemma 4.7.4. If C is a stable ∞-category, and 𝑋,𝑌 ∈ C, then HomC (𝑋,𝑌 ) ∈ Sp.

Proof. We have that HomC (𝑋,𝑌 ) ∈ S∗, so

ΩHomC (𝑋,𝑌 ) ≃ HomC (Σ𝑋,𝑌 ) ≃ HomC (𝑋,𝑌 ).

So these are infinite loop spaces. □

Proof of theorem: if C ≃ Mod𝑅 (Sp), then C is presentable. Take 𝐶 = 𝑅, then Ext𝑛
C
(𝑅, 𝐷) � 𝜋𝑛𝐷. Then

𝐷 ≃ 0 if and only if 𝜋−𝑛𝐷 = 0 for all 𝑛.
For the other direction, if C ∈ Pr𝐿, then as C is stable, there is a map

Sp ⊗ C→ C

(𝐸,𝐶) ↦→ 𝐸 ⊗ 𝐶,

adjoint to HomC (𝐶,−) valued in Sp. That is, C is tensored and cotensored over spectra.
We have

− ⊗ 𝐶 : Sp⇆ C : HomC (𝐶,−).

Let 𝐺 = HomC (𝐶,−), then the idea is that this is monadic and the monad is equivalent to − ∧S 𝑅 for
some 𝑅.

Let 𝛼 : 𝐷 → 𝐷′ in C such that 𝐺 (𝛼) is an equivalence in Sp. Then 𝐺 (𝐶𝛼) ≃ 0.

𝜋𝑛𝐶𝛼 ≃ Ext−𝑛C (𝐶,𝐺𝛼) = 0,

so 𝐶𝛼 ≃ 0, so 𝛼 equivalence in C.
Then 𝑅 := 𝐺 (𝐶) = HomC (𝐶,𝐶) = EndC (𝐶) ∈ Alg𝐸1

(Sp).
With 𝐸 ∈ Sp and 𝐷 ∈ C, get 𝐸 ∧ 𝐺 (𝐷) ≃ 𝐺 (𝐸 ⊗ 𝐷). This is true as 𝐺 preserves all colimits, suffices to

check for 𝐸 = S then obvious. 𝑅 = 𝐺 (𝐶), 𝐸 ∧ 𝑅 = 𝐺 (𝑋 ⊗ 𝐶), Barr Beck Lurie monadicity.
If 𝑅 = EndC (𝐶) get an monoidal variant

Alg𝐸∞ (Sp) → Alg𝐸∞ (
𝐿

Pr)
𝑅 ↦→ Mod𝑅 .

So we can say that C ∈ Alg𝐸∞ (Pr
𝐿) belongs to the image above if and only if there is some 𝐼 ∈ C a compact

generator.
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Theorem 4.7.5. (Stable Dold Kan) Let 𝑅 be a commutative ring. Then

(Mod𝐻𝑅 (Sp),∧𝑅, 𝐻𝑅) ≃
(
𝐷 (𝑅), ⊗L𝑅, 𝑅

)
.

Proof sketch. Take 𝐷∗ ∈ Ch𝑅, then 𝐻𝑛 (𝐷∗) = Ext−𝑛𝑅 (𝑅, 𝐷∗) � Ext−𝑛
𝐷 (𝑅) (𝑅, 𝐷∗). Thus 𝑅 is a compact genera-

tor.
Thus 𝐷 (𝑅) ≃ Mod𝐴(Sp), where 𝐴 = End𝐷 (𝑅) (𝑅), but we check

𝜋𝑛 (𝐴) � Ext−𝑛
𝐷 (𝑅) (𝑅, 𝑅)

=

{
𝑅 𝑛 = 0

0 else,

so 𝐴 ≃ 𝐻𝑅. □

Shipley proved this in model categories in early 2000’s.

4.8 Universal trace methods for algebraic 𝐾-theory

Recall: for 𝑅 ∈ Ring, we can define 𝐾0 (𝑅) = 𝐾0 (P(𝑅)). The latter 𝐾0 is Grothendieck group completion of
commutative monoids, and here P(𝑅) is iso classes of finitely generated projective (right) 𝑅-modules.

If 𝑀 ⊕ 𝑁 � 𝑅𝑛, then [𝑀] + [𝑁] = [𝑅𝑛] in 𝐾0 (𝑅). That is, exact sequences split in 𝐾0 (𝑅).
Eilenberg swindle: If we just did projective, not also finitely generated, we would get 0 because any

projective 𝑀 has 𝑀 ⊕ 𝑁 � 𝑅𝑛 for some 𝑁, 𝑛, hence we could take

𝑅∞ = 𝑀 ⊕ 𝑁 ⊕ 𝑀 ⊕ 𝑁 ⊕ · · ·

Since 𝑀 ⊕ 𝑅∞ � 𝑅∞, this would imply [𝑀] = 0.

Definition 4.8.1. 𝐾𝑛 (𝑅) = 𝜋𝑛 (BGL(𝑅)+ × 𝐾0 (𝑅)).

Here GL(𝑅) = colim𝑛GL𝑛 (𝑅), and the plus construction is the universal 𝐻-space receiving a map from
BGL(𝑅), abelianizing 𝜋1, ...

Note that BGL(𝑅)+ × 𝐾0 (𝑅) is an infinite loop space. It admits a Gersten-Wagoner delooping.
𝐾-theory can be generalized to a much wider context, e.g. exact categories, and stable ∞-categories.
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For example 𝑅 corresponds to the stable ∞-category Modcpct
𝐻𝑅
(Sp). Taking compact objects is again to

avoid size issues.
Blumberg-Gepner-Tabuada: Define connective 𝐾-theory as a functor

Catst∞ → Sp≥0,

where Catst∞ is the category of stable ∞-categories and exact functors (preserves finite limits and colimits).

Definition 4.8.2. Let Catperf∞ ⊆ Catst∞ be the full subcategory spanned by idempotent-complete categories.

We have that C is idempotent complete if for all 𝑋 ∈ C, and any 𝑒 : 𝑋 → 𝑋 in C such that 𝑒2 ≃ 𝑒, we
have a splitting onto its image.

F.g. projective modules are idempotent complete, free modules are not.
Idempotent completion is a left adjoint to the inclusion:

Idem : Catst∞ ⇆ Catperf∞ : 𝑖.

We have that Idem(C) = Ind(C)𝜔 (BGT 2.20).
Think of an idempotent complete stable ∞-category as the compact objects of a presentable stable ∞-

category.
To define 𝐾 (C) for C ∈ Catperf∞ , we can take

𝐾 (C) = |𝑆•C≃ | .

𝐾-theory is comprised of two concepts:

• abelian group completion

• splitting exact sequences

Definition 4.8.3. Let A
𝐹−→ B

𝐺−→ C be exact functors btw stable ∞-categories.

1. Say 𝐹 is a Morita equivalence if Idem(𝐹) is an equivalence of ∞-categories

2. The sequence is exact if 𝐹 is fully faithful, 𝐺 ◦ 𝐹 ≃ 0, and C ≃ B/A in Catperf∞ .

3. The sequence is split exact if there exist right adjoint functors 𝐹′, 𝐺′ to 𝐹, 𝐺, respectively, so that
𝐹′𝐹 = id and 𝐺𝐺′ = id.

Definition 4.8.4. Let 𝐸 : Catst∞ → D where D ∈ Pr𝐿st. We say 𝐸 is additive if it:

1. inverts Morita equivalences

2. preserves filtered colimits

3. sends split exact sequences to split (co)fiber sequences in D, i.e. 𝐸 (B) ≃ 𝐸 (A) ∨ 𝐸 (B).

Take

Catst∞
Idem−−−−→ Catperf∞ ↩−→ Fun

((
Catperf∞

)op
, S

)
Sp−−→ Fun(

(
Catperf∞

)op
, Sp) → Fun(

(
Catperf∞

)op
, Sp)/∼

where we mod out by split exact sequences.
We call the resulting object Madd, and the composition

Uadd : Catst∞ →Madd.

This functor is the universal additive invariant, in the sends that

Fun𝐿 (Madd,D)
U∗add−−−−→ Funadd (Catst∞,D)

for all D ∈ Pr𝐿st.
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Definition 4.8.5. For C ∈ Catperf∞ , we define

𝐾 (C) = HomMadd
(Uadd (SpWh),Uadd (C)) ∈ Sp≥0.

We can make this universal property monoidal: if C is a symmetric monoidal ∞-category, then 𝐾 (C) is
an 𝐸∞ ring spectrum.

Can construct ⊗ in Catperf∞ similar to Pr𝐿. This induces a monoidal structure on Funadd (Catperf∞ , Sp) by
Day convolution.

Here Uadd is strong monoidal. Then for all D ∈ Alg𝐸∞ (Pr
𝐿), we get

Fun𝐿,𝑙𝑎𝑥 (Madd,D) ≃ Fun𝑙𝑎𝑥add (Cat
perf
∞ ,D).

Application: Dennis trace 𝐾 (𝑅) → THH(𝑅). Here THH(𝑅) = 𝑅 ∧𝑅∧𝑅op 𝑅. If 𝑅 is a 𝑘-algebra, get

H∗ (𝑅) = 𝐻∗ (𝑅 ⊗L𝑅⊗𝑅op 𝑅) = Tor𝑅⊗𝑅
op

∗ (𝑅, 𝑅).

Can replace 𝑅 by any stable ∞-cat C. Here

THH(C) = colim
(
· · · ⨿(𝑐0 ,...,𝑐𝑛 ) C(𝑐𝑛−1, 𝑐𝑛) ∧ · · · ∧ C(𝑐𝑛, 𝑐0)

)
.

Here THH(Modperf
𝑅
) = THH(𝑅).

We have THH : Catst∞ → Sp≥0. It is an additive invariant (clearly preserves Morita equivalence and
filtered colimits). Can use Dennis-Waldhausen-Morita argument to show it sends split exact sequences to
cofiber sequences.

Theorem 4.8.6. Let 𝐸 be any additive invariant, i.e. 𝐸 ∈ Funadd (Catst∞, Sp). Then Nat (𝐾, 𝐸) ≃ 𝐸 (SpWh).

We see that

Nat (𝐾 (−),THH(−)) � THH(SpWh) ≃ THH(S) ≃ S.

Applying 𝜋0, we get that

[𝐾 (C),THH(C)] � 𝜋0S � Z.

Given 𝐹 : 𝐾 (C) → THH(C), we get

S→ Map(Uadd(SpWh),Uadd(SpWh)) ≃ 𝐾 (S) 𝐹−→ THH(S) ≃ S.

The Dennis trace picks up 1 ∈ Z.
We can view 𝐾 (𝑅) → THH(𝑅) via

BGL𝑛 (𝑅) → 𝐵cycGL𝑛 (𝑅) → 𝐵cyc𝑀𝑛 (𝑅) → 𝐵cyc𝑅.

On 𝜋0, we get

𝐾0 (𝑅) → 𝐻𝐻0 (𝑅).

For 𝑅 ∈ Ring, we send [𝑃] ↦→ tr(id𝑃 ⊕ 0).
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